12 resultados para Miniature electronic equipment
em University of Queensland eSpace - Australia
Resumo:
This paper explores potential for the RAMpage memory hierarchy to use a microkernel with a small memory footprint, in a specialized cache-speed static RAM (tightly-coupled memory, TCM). Dreamy memory is DRAM kept in low-power mode, unless referenced. Simulations show that a small microkernel suits RAMpage well, in that it achieves significantly better speed and energy gains than a standard hierarchy from adding TCM. RAMpage, in its best 128KB L2 case, gained 11% speed using TCM, and reduced energy 14%. Equivalent conventional hierarchy gains were under 1%. While 1MB L2 was significantly faster against lower-energy cases for the smaller L2, the larger SRAM's energy does not justify the speed gain. Using a 128KB L2 cache in a conventional architecture resulted in a best-case overall run time of 2.58s, compared with the best dreamy mode run time (RAMpage without context switches on misses) of 3.34s, a speed penalty of 29%. Energy in the fastest 128KB L2 case was 2.18J vs. 1.50J, a reduction of 31%. The same RAMpage configuration without dreamy mode took 2.83s as simulated, and used 2.39J, an acceptable trade-off (penalty under 10%) for being able to switch easily to a lower-energy mode.
Resumo:
A multiagent diagnostic system implemented in a Protege-JADE-JESS environment interfaced with a dynamic simulator and database services is described in this paper. The proposed system architecture enables the use of a combination of diagnostic methods from heterogeneous knowledge sources. The process ontology and the process agents are designed based on the structure of the process system, while the diagnostic agents implement the applied diagnostic methods. A specific completeness coordinator agent is implemented to coordinate the diagnostic agents based on different methods. The system is demonstrated on a case study for diagnosis of faults in a granulation process based on HAZOP and FMEA analysis.
Resumo:
The UQ RoboRoos have been developed to participate in the RoboCup robot soccer small size league over several years. RoboCup 2001 saw a focus on the mechanical design of the RoboRoos, with the introduction of an omni-directional drive system and a high power kicker. The change in mechanical design had implications for the rest of the system particularly navigation and multi-robot planning. In addition, the overhead vision system was upgraded to improve reliability and robustness.
Resumo:
The following topics were dealt with: semiconductor growth (MBE, PECVD, MOCVD, MOVPE) and characterizations; high-electron mobility transistors (HEMTs); microcavity organic light emitting diode (MOLED); semiconductor superlattices; photodiode arrays; MEMS structures; lithography;semiconductor lasers; semiconductor optical amplifiers; surface treatment and annealing
Resumo:
Objective To quantify the temperature changes in the dental pulp associated with equine dental procedures using power grinding equipment. Design A matrix experimental design with replication on the same sample was followed to allow the following independent variables to be assessed: horse age (young or old), tooth type (premolar or molar), powered grinding instrument (rotating disc or die grinder), grinding time (15 or 20 seconds) and the presence or absence of water coolant. Procedure Sound premolar and molar teeth from a 6-year-old horse and a 15-year-old horse, which had been removed postmortem, were sectioned parallel to the occlusal plane to allow placement of a miniature thermocouple at the level of the dental pulp. The maximum temperature increase, the time taken to reach this maximum and the cooling time were measured (n=10 in each study). The teeth were placed in a vice and the instrument used on the tooth as per clinical situation. Results Significant differences were recorded for horse age (P < 0.001), instrument type (P < 0.001), grinding time (P < 0.001) and presence or absence of coolant (P < 0.001). There was no significant difference for tooth type. Conclusion Thermal insult to the dental pulp from the use of power instruments poses a significant risk to the tooth. This risk can be reduced or eliminated by appropriate selection of treatment time and by the use of water irrigation as a coolant. The increased dentine thickness in older horses appears to mitigate against thermal injury from frictional heat.