3 resultados para Mineralized Bone Nodules

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone cell cultures were evaluated to determine if osteogenic cell populations at different skeletal sites in the horse are heterogeneous. Osteogenic cells were isolated from cortical and cancellous bone in vitro by an explant culture method. Subcultured cells were induced to differentiate into bone-forming osteoblasts. The osteoblast phenotype was confirmed by immunohistochemical testing for osteocalcin and substantiated by positive staining of cells for alkaline phosphatase and the matrix materials collagen and glycosaminoglycans. Bone nodules were stained by the von Kossa method and counted. The numbers of nodules produced from osteogenic cells harvested from different skeletal sites were compared with the use of a mixed linear model. On average, cortical bone sites yielded significantly greater numbers of nodules than did cancellous bone sites. Between cortical bone sites, there was no significant difference in nodule numbers. Among cancellous sites, the radial cancellous bone yielded significantly more nodules than did the tibial cancellous bone. Among appendicular skeletal sites, tibial metaphyseal bone yielded significantly fewer nodules than did all other long bone sites. This study detected evidence of heterogeneity of equine osteogenic cell populations at various skeletal sites. Further characterization of the dissimilarities is warranted to determine the potential role heterogeneity plays in differential rates of fracture healing between skeletal sites.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The use of extracellular matrix materials as scaffolds for the repair and regeneration of tissues is receiving increased attention. The current study was undertaken to test whether extracellular matrix formed by osteoblasts in vitro could be used as a scaffold for osteoblast transplantation and induce new bone formation in critical size osseous defects in vivo. Human osteoblasts derived from alveolar bone were cultured in six-well plates until confluent and then in mineralization media for a further period of 3 weeks to form an osteoblast-mineralized matrix complex. Histologically, at this time point a tissue structure with a connective tissue-like morphology was formed. Type I collagen was the major extracellular component present and appeared to determine the matrix macrostructure. Other bone-related proteins such as alkaline phosphatase (ALP), bone morphogenetic protein (BMP)-2 and -4, bone sialoprotein (BSP), osteopontin (OPN), and osteocalcin (OCN) also accumulated in the matrix. The osteoblasts embedded in this matrix expressed mRNAs for these bone-related proteins very strongly. Nodules of calcification were detected in the matrix and there was a correlation between calcification and the distribution of BSP and OPN. When this matrix was transplanted into a critical size bone defect in skulls of inummodeficient mice (SCID), new bone formation occurred. Furthermore, the cells inside the matrix survived and proliferated in the recipient sites, and were traceable by the human-specific Alu gene sequence using in situ hybridization. It was found that bone-forming cells differentiated from both transplanted human osteoblasts and activated endogenous mesenchymal cells. This study indicates that a mineralized matrix, formed by human osteoblasts in vitro, can be used as a scaffold for osteoblast transplantation, which subsequently can induce new bone formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growth hormone (GH) regulates many of the factors responsible for controlling the development of bone marrow progenitor cells (BMPCs). The aim of this study was to elucidate the role of GH in osteogenic differentiation of BMPCs using GH receptor null mice (GHRKO). BMPCs from GHRKO and their wild-type (WT) littermates were quantified by flow cytometry and their osteogenic differentiation in vitro was determined by cell morphology, real-time RT-PCR, and biochemical analyses. We found that freshly harvested GHRKO marrow contains 3% CD34 (hernatopoietic lineage), 43.5% CD45 (monocyte/macrophage lineage), and 2.5% CD106 positive (CFU-F/BMPC) cells compared to 11.2%, 45%, and 3.4% positive cells for (WT) marrow cells, respectively. When cultured for 14 days under conditions suitable for CFU-F expansion, GHRKO marrow cells lost CD34 positivity, and were markedly reduced for CD45, but 3- to 4-fold higher for CD106. While WT marrow cells also lost CD34 expression, they maintained CD45 and increased CD106 levels by 16-fold. When BMPCs from GHRKO mice were cultured under osteogenic conditions, they failed to elongate, in contrast to WT cells. Furthermore, GHRKO cultures expressed less alkaline phosphatase, contained less mineralized calcium, and displayed lower osteocalcin expression than WT cells. However, GHRKO cells displayed similar or higher expression of cbfa-1, collagen 1, and osteopontin mRNA compared to WT. In conclusion, we show that GH has an effect on the proportions of hematopoietic and mesenchymal progenitor cells in the bone marrow, and that GH is essential for both the induction and later progression of osteogenesis. (c) 2005 Elsevier Inc. All rights reserved.