2 resultados para Middle-size cities
em University of Queensland eSpace - Australia
Resumo:
Widespread drought and record maximum temperatures in eastern Australia produced a large dust storm on 23 October, 2002 which traversed a large proportion of eastern Australia and engulfed communities along a 2000 km stretch of coastline from south of Sydney ( NSW) to north of Mackay ( Queensland). This event provided an opportunity for a study of the impacts of rural dust upon the air quality of four Australian cities. A simple model is used to predict dust concentrations, dust deposition rates and particle size characteristics of the airborne dust in the cities. The total dust load of the plume was 3.35 to 4.85 million tones, and assuming a ( conservative) plume height of 1500 m, 62 - 90% of this dust load was deposited in-transit to the coast. It is conservatively estimated that 3.5, 12.0, 2.1 and 1.7 kilotonnes of dust were deposited during the event in Sydney, Brisbane, Gladstone and Mackay, respectively. In the South East Queensland region, this deposition is equivalent to 40% of the total annual TSP emissions for the region. The event increased TSP, PM10 and PM2.5 concentrations and reduced the visibility beyond the health and amenity guidelines in the four cities. For example, the 24-h average PM10 concentrations in Brisbane and Mackay, were 161 and 475 mu g m(-3) respectively, compared with the Australian national ambient air quality standard of 50 mu g m(-3). The 24-h average PM2.5 concentration in Brisbane was 42 mu g m(-3), compared with the national advisory standard of 25 mu g m(-3). These rural dusts significantly increased PM10/TSP ratios and decreased PM2.5/PM10 ratios, indicating that most of the particles were between PM2.5 and PM10.
Resumo:
We quantified the morphology of over 350 pyramidal neurons with identified ipsilateral corticocortical projections to the primary (V1) and middle temporal (MT) visual areas of the marmoset monkey, following intracellular injection of Lucifer Yellow into retrogradely labelled cells. Paralleling the results of studies in which randomly sampled pyramidal cells were injected, we found that the size of the basal dendritic tree of connectionally identified cells differed between cortical areas, as did the branching complexity and spine density. We found no systematic relationship between dendritic tree structure and axon target or length. Instead, the size of the basal dendritic tree increased roughly in relation to increasing distance from the occipital pole, irrespective of the length of the connection or the cortical layer in which the neurons were located. For example, cells in the second visual area had some of the smallest and least complex dendritic trees irrespective of whether they projected to V1 or MT, while those in the dorsolateral area (DL) were among the largest and most complex. We also observed that systematic differences in spine number were more marked among V1-projecting cells than MT-projecting cells. These data demonstrate that the previously documented systematic differences in pyramidal cell morphology between areas cannot simply be attributed to variable proportions of neurons projecting to different targets, in the various areas. Moreover, they suggest that mechanisms intrinsic to the area in which neurons are located are strong determinants of basal dendritic field structure.