3 resultados para Middle North Shore of the Saint Lawrence
em University of Queensland eSpace - Australia
Resumo:
The 40 km of coastline from Fortrose to Chaslands Mistake (southeastern South Island, New Zealand) comprises sediments that are part of the Early-Middle Jurassic of the Murihiku Terrane. The sediments are dominantly fluvial with some marine beds and alluvial fan deposition, and display an evolution of fluvial style which progresses from perennial flow to seasonal flow. The McPhee Cove Conglomerate is a prominent unit to the north. It has been used to separate two formations which would otherwise, on inherent lithological grounds, be difficult to distinguish. This paper discusses several similar conglomerates which occur in the south, but which are separated from the type area of the McPhee Conglomerate by major tectonic disruption. Hence, the existing lithostratigraphic nomenclature to the north, including the McPhee Cove Conglomerate, cannot be simply extended southwards. The Fortrose-Chaslands area appears to consist of two tectonic blocks, the Slope Point Block and the Brothers Block, which are separated from each other and from the adjacent Papatowai Block by major strike faults (or fault zones). A change is proposed to the existing stratigraphy which involves recognising all terrestrial sediments as part of the False Island Formation. Four prominent clast-supported conglomerate horizons are named as members of the False Islet Formation: the White Head Conglomerate, Black Bluff Conglomerate. Hoiho Conglomerate, and Slope Point Conglomerate Members. The latter contains five named conglomerate beds.
Resumo:
The age structure and, stable isotope composition of a stalagmite (CC I) from an upland cave in central-western Italy were studied to investigate regional response to global climatic changes. Four growth phases are constrained by 28 thermal ionization and multi-collector inductively coupled plasma mass spectrometry Th-U ages and reveal intermittent deposition through the period between Marine isotope Stage (MIS) 11 and 3 (similar to380 and similar to43 kyr). Most of the growth took place between similar to380 and similar to280 kyr, a period punctuated briefly by a hiatus in deposition through the glacial maximum of MIS 10. Growth was terminated abruptly at 280 kyr just prior to the MIS 8 glacial maximum. With a present-day chamber temperature of 7.5 degreesC, the timing of hiatuses close to these glacial maxima point to freezing conditions at the time. No deposition was recorded through the entirety of MIS 7 and most of MIS 6, whilst two minor growth phases occurred at similar to141-125 and similar to43 kyr. Growth at 141 kyr indicates temperatures >0 degreesC at a time when MIS 6 ice volumes were close to their maximum. High stable carbon isotope (delta(13)C) values (similar to2.8parts per thousand to +3.1parts per thousand) throughout the stalagmite's growth reflect a persistently low input of biogenic CO2, indicating that the steep, barren and alpine-like recharge area of today ha's been in existence for at least the last similar to380 kyr. During MIS 9, the lowest delta(13)C values occur well after maximum interglacial conditions, suggesting a lag in the development of post-glacial soils in this high-altitude karst. The stable oxygen isotope (delta(18)O) trends match the main structural features of the major climate proxy records (SPECMAP, Vostok and Devils Hole), suggesting that the delta(18)O of CC1 has responded to global-scale climate changes, whilst remarkable similarity exists between CC1 delta(18)O and regional sea-surface temperature reconstructions from North Atlantic core ODP980 and southwest Pacific marine core MD97-2120 through the most detailed part of the CC1 record, MIS 9-8. The results suggest that CC1 and other stalagmites from the cave have the potential to capture a long record of regional temperature trends, particularly in regards to the relative severity of Pleistocene glacial stages. (C) 2004 Elsevier B.V. All rights reserved.