7 resultados para Microscopic simulation

em University of Queensland eSpace - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microscopic traffic-simulation tools are increasingly being applied to evaluate the impacts of a wide variety of intelligent transport, systems (ITS) applications and other dynamic problems that are difficult to solve using traditional analytical models. The accuracy of a traffic-simulation system depends highly on the quality of the traffic-flow model at its core, with the two main critical components being the car-following and lane-changing models. This paper presents findings from a comparative evaluation of car-following behavior in a number of traffic simulators [advanced interactive microscopic simulator for urban and nonurban networks (AIMSUN), parallel microscopic simulation (PARAMICS), and Verkehr in Statiten-simulation (VISSIM)]. The car-following algorithms used in these simulators have been developed from a variety of theoretical backgrounds and are reported to have been calibrated on a number of different data sets. Very few independent studies have attempted to evaluate the performance of the underlying algorithms based on the same data set. The results reported in this study are based on a car-following experiment that used instrumented vehicles to record the speed and relative distance between follower and leader vehicles on a one-lane road. The experiment was replicated in each tool and the simulated car-following behavior was compared to the field data using a number of error tests. The results showed lower error values for the Gipps-based models implemented in AIMSUN and similar error values for the psychophysical spacing models used in VISSIM and PARAMICS. A qualitative drift and goal-seeking behavior test, which essentially shows how the distance headway between leader and follower vehicles should oscillate around a stable distance, also confirmed the findings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grand canonical Monte Carlo (GCMC) simulation was used for the systematic investigation of the supercritical methane adsorption at 273 K on an open graphite surface and in slitlike micropores of different sizes. For both considered adsorption systems the calculated excess adsorption isotherms exhibit a maximum. The effect of the pore size on the maximum surface excess and isosteric enthalpy of adsorption for methane storage at 273 K is discussed. The microscopic detailed picture of methane densification near the homogeneous graphite wall and in slitlike pores at 273 K is presented with selected local density profiles and snapshots. Finally, the reliable pore size distributions, obtained in the range of the microporosity, for two pitch-based microporous activated carbon fibers are calculated from the local excess adsorption isotherms obtained via the GCMC simulation. The current systematic study of supercritical methane adsorption both on an open graphite surface and in slitlike micropores performed by the GCMC summarizes recent investigations performed at slightly different temperatures and usually a lower pressure range by advanced methods based on the statistical thermodynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An appreciation of the physical mechanisms which cause observed seismicity complexity is fundamental to the understanding of the temporal behaviour of faults and single slip events. Numerical simulation of fault slip can provide insights into fault processes by allowing exploration of parameter spaces which influence microscopic and macroscopic physics of processes which may lead towards an answer to those questions. Particle-based models such as the Lattice Solid Model have been used previously for the simulation of stick-slip dynamics of faults, although mainly in two dimensions. Recent increases in the power of computers and the ability to use the power of parallel computer systems have made it possible to extend particle-based fault simulations to three dimensions. In this paper a particle-based numerical model of a rough planar fault embedded between two elastic blocks in three dimensions is presented. A very simple friction law without any rate dependency and no spatial heterogeneity in the intrinsic coefficient of friction is used in the model. To simulate earthquake dynamics the model is sheared in a direction parallel to the fault plane with a constant velocity at the driving edges. Spontaneous slip occurs on the fault when the shear stress is large enough to overcome the frictional forces on the fault. Slip events with a wide range of event sizes are observed. Investigation of the temporal evolution and spatial distribution of slip during each event shows a high degree of variability between the events. In some of the larger events highly complex slip patterns are observed.