3 resultados para Microbial biomass carbon

em University of Queensland eSpace - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Poly-beta-hydroxyalkanoate (PHA) is a polymer commonly used in carbon and energy storage for many different bacterial cells. Polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), store PHA anaerobically through metabolism of carbon substrates such as acetate and propionate. Although poly-beta-hydroxybutyrate (PHB)and poly-beta-hydroxyvalerate (PHV) are commonly quantified using a previously developed gas chromatography (GC) method, poly-beta-hydroxy-2-methyl valerate (PH2MV) is seldom quantified despite the fact that it has been shown to be a key PHA fraction produced when PAOs or GAOs metabolise propionate. This paper presents two GC-based methods modified for extraction and quantification of PHB, PHV and PH2MV from enhanced biological phosphorus removal (EBPR) systems. For the extraction Of PHB and PHV from acetate fed PAO and GAO cultures, a 3% sulfuric acid concentration and a 2-20 h digestion time is recommended, while a 10% sulfuric acid solution digested for 20 h is recommended for PHV and PH2MV analysis from propionate fed EBPR systems. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two bacterial strains, 2AC and 4BC, both capable of utilizing naphthalene-2-sulfonic acid (2-NSA) as a sole source of carbon, were isolated from activated sludges previously exposed to tannery wastewater. Enrichments were carried out in mineral salt medium (MSM) with 2-NSA as the sole carbon source. 16S rDNA sequencing analysis indicated that 2AC is an Arthrobacter sp. and 4BC is a Comamonas sp. Within 33 h, both isolates degraded 100% of 2-NSA in MSM and also 2-NSA in non-sterile tannery wastewater. The yield coefficient was 0.33 g biomass dry weight per gram of 2-NSA. A conceptual model, which describes the aerobic transformation of organic matter, was used for interpreting the biodegradation kinetics of 2-NSA. The half-lives for 2-NSA, at initial concentrations of 100 and 500 mg/l in MSM, ranged from 20 h (2AC) to 26 h (4BC) with lag-phases of 8 h (2AC) and 12 h (4BC). The carbon balance indicates that 75-90% of the initial TOC (total organic carbon) was mineralized, 5-20% remained as DOC (dissolved organic carbon) and 3-10% was biomass carbon. The principal metabolite of 2-NSA biodegradation (in both MSM and tannery wastewater) produced by Comamonas sp. 4BC had a MW of 174 and accounted for the residual DOC (7.0-19.0% of the initial TOC and 66% of the remaining TOC). Three to ten percent of the initial TOC (33% of the remaining TOC) was associated with biomass. The metabolite was not detected when Arthrobacter sp. 2AC was used, and a lower residual DOC and biomass carbon were recorded. This suggests that the two strains may use different catabolic pathways for 2-NSA degradation. The rapid biodegradation of 2-NSA (100 mg/l) added to non-sterile tannery wastewater (total 2-NSA, 105 mg/l) when inoculated with either Arthrobacter 2AC or Comamonas 4BC showed that both strains were able to compete with the indigenous microorganisms and degrade 2-NSA even in the presence of alternate carbon sources (DOC in tannery wastewater = 91 mg/l). The results provide information useful for the rational design of bioreactors for tannery wastewater treatment.