170 resultados para Microarray Analysis
em University of Queensland eSpace - Australia
Resumo:
Disease resistance is associated with a plant defense response that involves an integrated set of signal transduction pathways. Changes in the expression patterns of 2.375 selected genes were examined simultaneously by cDNA microarray analysis in Arabidopsis thaliana after inoculation with an incompatible fungal pathogen Alternaria brassicicola or treatment with the defense-related signaling molecules salicylic acid (SA), methyl jasmonate (MJ), or ethylene, Substantial changes (up- and down-regulation) in the steady-state abundance of 705 mRNAs were observed in response to one or more of the treatments, including known and putative defense-related genes and 106 genes with no previously described function or homology, In leaf tissue inoculated with A. brassicicola, the abundance of 168 mRNAs was increased more than 2.5-fold, whereas that of 39 mRNAs was reduced. Similarly, the abundance of 192, 221, and 55 mRNAs was highly (>2.5-fold) increased after treatment with SA, MJ, and ethylene, respectively. Data analysis revealed a surprising level of coordinated defense responses, including 169 mRNAs regulated by multiple treatments/defense pathways. The largest number of genes coinduced (one of four induced genes) and corepressed was found after treatments with SA and MJ. In addition, 50% of the genes induced by ethylene treatment were also induced by MJ treatment. These results indicated the existence of a substantial network of regulatory interactions and coordination occurring during plant defense among the different defense signaling pathways, notably between the salicylate and jasmonate pathways that were previously thought to act in an antagonistic fashion.
Resumo:
We have constructed cDNA microarrays for soybean (Glycine max L. Merrill), containing approximately 4,100 Unigene ESTs derived from axenic roots, to evaluate their application and utility for functional genomics of organ differentiation in legumes. We assessed microarray technology by conducting studies to evaluate the accuracy of microarray data and have found them to be both reliable and reproducible in repeat hybridisations. Several ESTs showed high levels (>50 fold) of differential expression in either root or shoot tissue of soybean. A small number of physiologically interesting, and differentially expressed sequences found by microarray analysis were verified by both quantitative real-time RT-PCR and Northern blot analysis. There was a linear correlation (r(2) = 0.99, over 5 orders of magnitude) between microarray and quantitative real-time RT-PCR data. Microarray analysis of soybean has enormous potential not only for the discovery of new genes involved in tissue differentiation and function, but also to study the expression of previously characterised genes, gene networks and gene interactions in wild-type, mutant or transgenic; plants.
Resumo:
Background: Changes in brain gene expression are thought to be responsible for the tolerance, dependence, and neurotoxicity produced by chronic alcohol abuse, but there has been no large scale study of gene expression in human alcoholism. Methods: RNA was extracted from postmortem samples of superior frontal cortex of alcoholics and nonalcoholics. Relative levels of RNA were determined by array techniques. We used both cDNA and oligonucleotide microarrays to provide coverage of a large number of genes and to allow cross-validation for those genes represented on both types of arrays. Results: Expression levels were determined for over 4000 genes and 163 of these were found to differ by 40% or more between alcoholics and nonalcoholics. Analysis of these changes revealed a selective reprogramming of gene expression in this brain region, particularly for myelin-related genes which were downregulated in the alcoholic samples. In addition, cell cycle genes and several neuronal genes were changed in expression. Conclusions: These gene expression changes suggest a mechanism for the loss of cerebral white matter in alcoholics as well as alterations that may lead to the neurotoxic actions of ethanol.
Resumo:
Microarrays are used to monitor the expression of thousands of gene transcripts. This technique requires high-quality RNA, which can be extracted from a variety sources, including autopsy brain tissue. Most nucleic acids and proteins are reasonably stable post mortem. However, their abundance and integrity can exhibit marked intraand inter-subject variability, so care must be taken when comparisons between case-groups are made. We will review issues associated with the sampling of RNA from autopsy brain tissue in relation to various ante- and post-mortem factors.
Resumo:
Background: Microarray transcript profiling has the potential to illuminate the molecular processes that are involved in the responses of cattle to disease challenges. This knowledge may allow the development of strategies that exploit these genes to enhance resistance to disease in an individual or animal population. Results: The Bovine Innate Immune Microarray developed in this study consists of 1480 characterised genes identified by literature searches, 31 positive and negative control elements and 5376 cDNAs derived from subtracted and normalised libraries. The cDNA libraries were produced from 'challenged' bovine epithelial and leukocyte cells. The microarray was found to have a limit of detection of 1 pg/mu g of total RNA and a mean slide-to-slide correlation co-efficient of 0.88. The profiles of differentially expressed genes from Concanavalin A ( ConA) stimulated bovine peripheral blood lymphocytes were determined. Three distinct profiles highlighted 19 genes that were rapidly up-regulated within 30 minutes and returned to basal levels by 24 h; 76 genes that were upregulated between 2 - 8 hours and sustained high levels of expression until 24 h and 10 genes that were down-regulated. Quantitative real-time RT-PCR on selected genes was used to confirm the results from the microarray analysis. The results indicate that there is a dynamic process involving gene activation and regulatory mechanisms re-establishing homeostasis in the ConA activated lymphocytes. The Bovine Innate Immune Microarray was also used to determine the cross-species hybridisation capabilities of an ovine PBL sample. Conclusion: The Bovine Innate Immune Microarray has been developed which contains a set of well-characterised genes and anonymous cDNAs from a number of different bovine cell types. The microarray can be used to determine the gene expression profiles underlying innate immune responses in cattle and sheep.
Resumo:
Saturated fat plays a role in common debilitating diseases such as obesity, type 2 diabetes, and coronary heart disease. It is also clear that certain fatty acids act as regulators of metabolism via both direct and indirect signalling of target tissues. As the molecular mechanisms of saturated fatty acid signalling in the liver are poorly defined, hepatic gene expression analysis was undertaken in a human hepatocyte cell line after incubation with palmitate. Profiling of mRNA expression using cDNA microarray analysis revealed that 162 of approximately 18,000 genes tested were differentially expressed after incubation with palmitate for 48 h. Altered transcription profiles were observed in a wide variety of genes, including genes involved in lipid and cholesterol transport, cholesterol catabolism, cell growth and proliferation, cell signalling, P-oxidation, and oxidative stress response. While palinitate signalling has been examined in pancreatic beta-cells, this is the first report showing that palmitate regulates expression of numerous genes via direct molecular signalling mechanisms in liver cells. (C) 2005 Elsevier Inc. All rights reserved.
Resumo:
The growth hormone receptor (GHR) is a critical regulator of postnatal growth and metabolism. However, the GHR signaling domains and pathways that regulate these processes in vivo are not defined. We report the first knock-in mouse models with deletions of specific domains of the receptor that are required for its in vivo actions. Mice expressing truncations at residue m569 (plus Y539/545-F) and at residue m391 displayed a progressive impairment of postnatal growth with receptor truncation. Moreover, after 4 months of age, marked male obesity was observed in both mutant 569 and mutant 391 and was associated with hyperglycemia. Both mutants activated hepatic JAK2 and ERK2, whereas STAT5 phosphorylation was substantially decreased for mutant 569 and absent from mutant 391, correlating with loss of IGF-1 expression and reduction in growth. Microarray analysis of these and GHR(-/-) mice demonstrated that particular signaling domains are responsible for the regulation of different target genes and revealed novel actions of growth hormone. These mice represent the first step in delineating the domains of the GHR regulating body growth and composition and the transcripts associated with these domains.
Resumo:
Gene expression studies from hematopoietic stem cell (HSC) populations purified to variable degrees have defined a set of sternness genes. Unexpectedly, results also hinted toward a HSC chromatin poised in a wide-open state. With the aim of providing a robust tool for further studies into the molecular biology of HSCs, the studies herein describe the construction and comparative molecular analysis of A-phage cDNA libraries from highly purified HSCs that retained their long-term repopulating activities (long-term HSCs [LT-HSCs]) and from short-term repopulating HSCs that were largely depleted of these activities. Microarray analysis of the libraries confirmed the previous results but also revealed an unforeseen preferential expression of translation- and metabolism-associated genes in the LT-HSCs. Therefore, these data indicate that HSCs are quiescent only in regard of proliferative activities but are in a state of readiness to provide the metabolic and translational activities required after induction of proliferation and exit from the HSC pool.
Resumo:
Natural killer T (NKT) cells are a lymphocyte lineage, which has diverse immune regulatory activities in many disease settings. Most previous studies have investigated the functions of this family of cells as a single entity, but more recent evidence highlights the distinct functional and phenotypic properties of NKT cell subpopulations. It is likely that the diverse functions of NKT cells are regulated and coordinated by these different NKT subsets. Little is known about how NKT subsets differ in their interactions with the host. We have undertaken the first microarray analysis comparing the gene expression profiles of activated human NKT cell subpopulations, including CD8(+) NKT cells, which have often been overlooked. We describe the significant gene expression differences among NKT cell subpopulations and some of the molecules likely to confer their distinct functional roles. Several genes not associated previously with NKT cells were shown to be expressed differentially in specific NKT cell subpopulations. Our findings provide new insights into the NKT cell family, which may direct further research toward better manipulation of NKT cells for therapeutic applications.
Resumo:
Alcoholism is a major health problem in Western countries, yet relatively little is known about the mechanisms by which chronic alcohol abuse causes the pathologic changes associated with the disease. It is likely that chronic alcoholism affects a number of signaling cascades and transcription factors, which in turn result in distinct gene expression patterns. These patterns are difficult to detect by traditional experiments measuring a few mRNAs at a time, but are well suited to microarray analyses. We used cDNA microarrays to analyze expression of approximately 10 000 genes in the frontal and motor cortices of three groups of chronic alcoholic and matched control cases. A functional hierarchy was devised for classification of brain genes and the resulting groups were compared based on differential expression. Comparison of gene expression patterns in these brain regions revealed a selective reprogramming of gene expression in distinct functional groups. The most pronounced differences were found in myelin-related genes and genes involved in protein trafficking. Significant changes in the expression of known alcohol-responsive genes, and genes involved in calcium, cAMP, and thyroid signaling pathways were also identified. These results suggest that multiple pathways may be important for neuropathology and altered neuronal function observed in alcoholism.
Resumo:
This article represents the proceedings of a symposium at the 2002 joint RSA/ISBRA Conference in San Francisco, California. The organizer was Paula L. Hoffman and the co-chairs were Paula L. Hoffman and Michael Miles. The presentations were (1) Introduction and overview of the use of DNA microarrays, by Michael Miles; (2) DNA microarray analysis of gene expression in brains of P and NP rats, by Howard J. Edenberg; (3) Gene expression patterns in brain regions of AA and ANA rats, by Wolfgang Sommer; (4) Patterns of gene expression in brains of selected lines of mice that differ in ethanol tolerance, by Boris Tabakoff; (5) Gene expression profiling related to initial sensitivity and tolerance in gamma-protein kinase C mutants, by Jeanne Wehner; and (6) Gene expression patterns in human alcoholic brain: from microarrays to protein profiles, by Joanne Lewohl.