38 resultados para Micro parallel kinematic manipulator
em University of Queensland eSpace - Australia
Resumo:
In most Of the practical six-actuator in-parallel manipulators, the octahedral form is either taken as it stands or is approximated. Yet considerable theoretical attention is paid in the literature to more general forms. Here we touch on the general form, and describe some aspects of its behavior that vitiate strongly against its adoption as a pattern for a realistic manipulate,: We reach the conclusion that the structure for in-parallel manipulators must be triangulated as fully as possible, so leading to the octahedral form. In describing some of the geometrical properties of the general octahedron, we show how they apply to manipulators. We examine in detail the special configurations at which the 6 x 6 matrix of leg lines is singular presenting results from the point of view of geometry in preference to analysis. In extending and enlarging on some known properties, a few behavioral surprises materialize. In studying special configurations, we start with the most general situation, and every other case derives from this. Our coverage is more comprehensive than any that we have found. We bring to light material that is, we think, of significant use to a designer.
Resumo:
This paper reports a parametric investigation and development of grinding technologies for micro aspherical mould inserts using parallel grinding method. The parametric investigation revealed that at nanometric scale the undeformed chip thickness has little influence on the surface finish of ground inserts. The grinding trace spacing has a slightly larger influence on the surface finish. A new technique was developed to true and dress the resin bonded micro wheels with mesh size of #3000, which produced a satisfactory wheel form accuracy and relatively high grain packing density. A form error compensation technique was also developed, with which mould inserts of submicron form accuracy were consistently produced. Using the developed technologies, micro aspherical inserts of diameters ranging from 200 mu m to 1000 mu m with surface finish of around 10 nm and form error of similar to 0.2-0.4 mu m were successfully fabricated. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Despite the insight gained from 2-D particle models, and given that the dynamics of crustal faults occur in 3-D space, the question remains, how do the 3-D fault gouge dynamics differ from those in 2-D? Traditionally, 2-D modeling has been preferred over 3-D simulations because of the computational cost of solving 3-D problems. However, modern high performance computing architectures, combined with a parallel implementation of the Lattice Solid Model (LSM), provide the opportunity to explore 3-D fault micro-mechanics and to advance understanding of effective constitutive relations of fault gouge layers. In this paper, macroscopic friction values from 2-D and 3-D LSM simulations, performed on an SGI Altix 3700 super-cluster, are compared. Two rectangular elastic blocks of bonded particles, with a rough fault plane and separated by a region of randomly sized non-bonded gouge particles, are sheared in opposite directions by normally-loaded driving plates. The results demonstrate that the gouge particles in the 3-D models undergo significant out-of-plane motion during shear. The 3-D models also exhibit a higher mean macroscopic friction than the 2-D models for varying values of interparticle friction. 2-D LSM gouge models have previously been shown to exhibit accelerating energy release in simulated earthquake cycles, supporting the Critical Point hypothesis. The 3-D models are shown to also display accelerating energy release, and good fits of power law time-to-failure functions to the cumulative energy release are obtained.
Resumo:
The primary objective of this study was to assess the lingual kinematic strategies used by younger and older adults to increase rate of speech. It was hypothesised that the strategies used by the older adults would differ from the young adults either as a direct result of, or in response to a need to compensate for, age-related changes in the tongue. Electromagnetic articulography was used to examine the tongue movements of eight young (M526.7 years) and eight older (M567.1 years) females during repetitions of /ta/ and /ka/ at a controlled moderate rate and then as fast as possible. The younger and older adults were found to significantly reduce consonant durations and increase syllable repetition rate by similar proportions. To achieve these reduced durations both groups appeared to use the same strategy, that of reducing the distances travelled by the tongue. Further comparisons at each rate, however, suggested a speed-accuracy trade-off and increased speech monitoring in the older adults. The results may assist in differentiating articulatory changes associated with normal aging from pathological changes found in disorders that affect the older population.
Resumo:
Discrete element method (DEM) modeling is used in parallel with a model for coalescence of deformable surface wet granules. This produces a method capable of predicting both collision rates and coalescence efficiencies for use in derivation of an overall coalescence kernel. These coalescence kernels can then be used in computationally efficient meso-scale models such as population balance equation (PBE) models. A soft-sphere DEM model using periodic boundary conditions and a unique boxing scheme was utilized to simulate particle flow inside a high-shear mixer. Analysis of the simulation results provided collision frequency, aggregation frequency, kinetic energy, coalescence efficiency and compaction rates for the granulation process. This information can be used to bridge the gap in multi-scale modeling of granulation processes between the micro-scale DEM/coalescence modeling approach and a meso-scale PBE modeling approach.
Resumo:
Two experiments were conducted on the nature of expert perception in the sport of squash. In the first experiment, ten expert and fifteen novice players attempted to predict the direction and force of squash strokes from either a film display (occluded at variable time periods before and after the opposing player had struck the ball) or a matched point-light display (containing only the basic kinematic features of the opponent's movement pattern). Experts outperformed the novices under both display conditions, and the same basic time windows that characterised expert and novice pick-up of information in the film task also persisted in the point-light task. This suggests that the experts' perceptual advantage is directly related to their superior pick-up of essential kinematic information. In the second experiment, the vision of six expert and six less skilled players was occluded by remotely triggered liquid-crystal spectacles at quasi-random intervals during simulated match play. Players were required to complete their current stroke even when the display was occluded and their prediction performance was assessed with respect to whether they moved to the correct half of the court to match the direction and depth of the opponent's stroke. Consistent with experiment 1, experts were found to be superior in their advance pick-up of both directional and depth information when the display was occluded during the opponent's hitting action. However, experts also remained better than chance, and clearly superior to less skilled players, in their prediction performance under conditions where occlusion occurred before any significant pre-contact preparatory movement by the opposing player was visible. This additional source of expert superiority is attributable to their superior attunement to the information contained in the situational probabilities and sequential dependences within their opponent's pattern of play.
Resumo:
Colloidal PbS nanocrystals over-coated with CdS are prepared in aqueous solutions and exhibit strong photoluminescence with two distinct peaks in the visible regime. A photoluminescence peak is observed at 640 nm, which is attributed to the band edge recombination in the PbS nanocrystals, and another peak at 510 nm, which is above the band edge of the PbS nanocrystals. The two PL peaks are isolated by extracting separate species of nanocrystal based upon their surface morphology. Micro-emulsions of hexane:PVA are used to remove the species containing the PL peak at 640 nm from the solution, leaving a singular peak at 510 nm. We show conclusively that the double-peaked structure observed in the photoluminescence spectra of PbS nanocrystals over-coated with CdS is due to the presence of two distinctly different nanocrystal species.
Resumo:
Optically transparent, mesostructured titanium dioxide thin films were fabricated using an amphiphilic poly(alkylene oxide) block copolymer template in combination with retarded hydrolysis of a titanium isopropoxide precursor. Prior to calcination, the films displayed a stable hexagonal mesophase and high refractive indices (1.5 to 1.6) relative to mesostructured silica (1.43). After calcination, the hexagonal mesophase was retained with surface areas >300 m2 g-1. The dye Rhodamine 6G (commonly used as a laser dye) was incorporated into the copolymer micelle during the templating process. In this way, novel dye-doped mesostructured titanium dioxide films were synthesised. The copolymer not only directs the film structure, but also provides a solubilizing environment suitable for sustaining a high monomer-to-aggregate ratio at elevated dye concentrations. The dye-doped films displayed optical thresholdlike behaviour characteristic of amplified spontaneous emission. Soft lithography was successfully applied to micropattern the dye-doped films. These results pave the way for the fabrication and demonstration of novel microlaser structures and other active optical structures. This new, high-refractive index, mesostructured, dye-doped material could also find applications in areas such as optical coatings, displays and integrated photonic devices.
Resumo:
This paper presents the recent finding by Muhlhaus et al [1] that bifurcation of crack growth patterns exists for arrays of two-dimensional cracks. This bifurcation is a result of the nonlinear effect due to crack interaction, which is, in the present analysis, approximated by the dipole asymptotic or pseudo-traction method. The nonlinear parameter for the problem is the crack length/ spacing ratio lambda = a/h. For parallel and edge crack arrays under far field tension, uniform crack growth patterns (all cracks having same size) yield to nonuniform crack growth patterns (i.e. bifurcation) if lambda is larger than a critical value lambda(cr) (note that such bifurcation is not found for collinear crack arrays). For parallel and edge crack arrays respectively, the value of lambda(cr) decreases monotonically from (2/9)(1/2) and (2/15.096)(1/2) for arrays of 2 cracks, to (2/3)(1/2)/pi and (2/5.032)(1/2)/pi for infinite arrays of cracks. The critical parameter lambda(cr) is calculated numerically for arrays of up to 100 cracks, whilst discrete Fourier transform is used to obtain the exact solution of lambda(cr) for infinite crack arrays. For geomaterials, bifurcation can also occurs when array of sliding cracks are under compression.
Resumo:
Environmental effects on the concentration of photosynthetic pigments in micro-algae can be explained by dynamics of photosystem synthesis and deactivation. A model that couples photosystem losses to the relative cellular rates of energy harvesting (light absorption) and assimilation predicts optimal concentrations of light-harvesting pigments and balanced energy flow under environmental conditions that affect light availability and metabolic rates. Effects of light intensity, nutrient supply and temperature on growth rate and pigment levels were similar to general patterns observed across diverse micro-algal taxa. Results imply that dynamic behaviour associated with photophysical stress, and independent of gene regulation, might constitute one mechanism for photo-acclimation of photosynthesis.
Resumo:
Background. Age-related motor slowing may reflect either motor programming deficits, poorer movement execution, or mere strategic preferences for online guidance of movement. We controlled such preferences, limiting the extent to which movements could be programmed. Methods. Twenty-four young and 24 older adults performed a line drawing task that allowed movements to he prepared in advance in one case (i.e., cue initially available indicating target location) and not in another (i.e., no cue initially available as to target location). Participants connected large or small targets illuminated by light-emitting diodes upon a graphics tablet that sampled pen tip position at 200 Hz. Results. Older adults had a disproportionate difficulty initiating movement when prevented from programming in advance. Older adults produced slower, less efficient movements, particularly when prevented from programming under greater precision requirements. Conclusions. The slower movements of older adults do not simply reflect a preference for online control, as older adults have less efficient movements when forced to reprogram their movements. Age-related motor slowing kinematically resembles that seen in patients with cerebellar dysfunction.
Resumo:
The cost of spatial join processing can be very high because of the large sizes of spatial objects and the computation-intensive spatial operations. While parallel processing seems a natural solution to this problem, it is not clear how spatial data can be partitioned for this purpose. Various spatial data partitioning methods are examined in this paper. A framework combining the data-partitioning techniques used by most parallel join algorithms in relational databases and the filter-and-refine strategy for spatial operation processing is proposed for parallel spatial join processing. Object duplication caused by multi-assignment in spatial data partitioning can result in extra CPU cost as well as extra communication cost. We find that the key to overcome this problem is to preserve spatial locality in task decomposition. We show in this paper that a near-optimal speedup can be achieved for parallel spatial join processing using our new algorithms.
Resumo:
Coset enumeration is a most important procedure for investigating finitely presented groups. We present a practical parallel procedure for coset enumeration on shared memory processors. The shared memory architecture is particularly interesting because such parallel computation is both faster and cheaper. The lower cost comes when the program requires large amounts of memory, and additional CPU's. allow us to lower the time that the expensive memory is being used. Rather than report on a suite of test cases, we take a single, typical case, and analyze the performance factors in-depth. The parallelization is achieved through a master-slave architecture. This results in an interesting phenomenon, whereby the CPU time is divided into a sequential and a parallel portion, and the parallel part demonstrates a speedup that is linear in the number of processors. We describe an early version for which only 40% of the program was parallelized, and we describe how this was modified to achieve 90% parallelization while using 15 slave processors and a master. In the latter case, a sequential time of 158 seconds was reduced to 29 seconds using 15 slaves.
Resumo:
Physiological and kinematic data were collected from elite under-19 rugby union players to provide a greater understanding of the physical demands of rugby union. Heart rate, blood lactate and time-motion analysis data were collected from 24 players (mean +/- s((x) over bar): body mass 88.7 +/- 9.9 kg, height 185 +/- 7 cm, age 18.4 +/- 0.5 years) during six competitive premiership fixtures. Six players were chosen at random from each of four groups: props and locks, back row forwards, inside backs, outside backs. Heart rate records were classified based on percent time spent in four zones (>95%, 85-95%, 75-84%, <75% HRmax). Blood lactate concentration was measured periodically throughout each match, with movements being classified as standing, walking, jogging, cruising, sprinting, utility, rucking/mauling and scrummaging. The heart rate data indicated that props and locks (58.4%) and back row forwards (56.2%) spent significantly more time in high exertion (85-95% HRmax) than inside backs (40.5%) and outside backs (33.9%) (P < 0.001). Inside backs (36.5%) and outside backs (38.5%) spent significantly more time in moderate exertion (75-84% HRmax) than props and locks (22.6%) and back row forwards (19.8%) (P < 0.05). Outside backs (20.1%) spent significantly more time in low exertion (< 75% HRmax) than props and locks (5.8%) and back row forwards (5.6%) (P < 0.05). Mean blood lactate concentration did not differ significantly between groups (range: 4.67 mmol.l(-1) for outside backs to 7.22 mmol.l(-1) for back row forwards; P < 0.05). The motion analysis data indicated that outside backs (5750 m) covered a significantly greater total distance than either props and locks or back row forwards (4400 and 4080 m, respectively; P < 0.05). Inside backs and outside backs covered significantly greater distances walking (1740 and 1780 m, respectively; P < 0.001), in utility movements (417 and 475 m, respectively; P < 0.001) and sprinting (208 and 340 m, respectively; P < 0.001) than either props and locks or back row forwards (walking: 1000 and 991 m; utility movements: 106 and 154 m; sprinting: 72 and 94 m, respectively). Outside backs covered a significantly greater distance sprinting than inside backs (208 and 340 m, respectively; P < 0.001). Forwards maintained a higher level of exertion than backs, due to more constant motion and a large involvement in static high-intensity activities. A mean blood lactate concentration of 4.8-7.2 mmol.l(-1) indicated a need for 'lactate tolerance' training to improve hydrogen ion buffering and facilitate removal following high-intensity efforts. Furthermore, the large distances (4.2-5.6 km) covered during, and intermittent nature of, match-play indicated a need for sound aerobic conditioning in all groups (particularly backs) to minimize fatigue and facilitate recovery between high-intensity efforts.