47 resultados para Micorriza vesicular-arbuscular
em University of Queensland eSpace - Australia
Resumo:
The presence of vesicular-arbuscular mycorrhizal (VAM) fungi in long-term cane-growing fields associated with yield decline led to the supposition that VAM fungi may be responsible for the poor yields. A glasshouse trial was established to test the effectiveness of a species of VAM fungi, Glomus clarum, extracted from one of these North Queensland fields on the growth of sugarcane (Saccharum interspecific hybrid), maize (Zea mays), and soybean (Glycine max) for 6 phosphorus (P) rates (0, 2.7, 8.2, 25, 74, 222 mg/kg). For maize and soybean plants that received VAM (+ VAM), root colonisation was associated with enhanced P uptake, improved dry weight (DW) production, and higher index tissue-P concentrations than those without VAM (-VAM). By comparing DW responses of maize and soybean for different P rates, savings in fertiliser P of up to 160 and 213 kg/ha, respectively, were realised. Sugarcane plants were generally less responsive. Apart from a 30% DW increase with VAM when 2.7 mg P/kg was added, DW of +VAM plants was equivalent to, or worse than in the case of 222 mg P/kg, DW of -VAM plants. For all 3 host species, colonisation was least at the highest P application, presumably from excessive P within the plant tissue. Critical P concentrations for the 3 host species were below those reported elsewhere, and for soybean and sugarcane, the critical concentration for +VAM plants was lower than that of -VAM plants. There are 3 implications that arise from this study. First, VAM fungi present in cane-growing soils can promote the growth of maize and soybean, which are potential rotation crops, over a range of P levels. Second, the mycorrhizal strain taken from this site did not generally contribute to a yield decline in sugarcane plants. Third, application of P fertiliser is not necessary for sugarcane when acid-extractable P is
Resumo:
Mycorthizae play a critical role in nutrient capture from soils. Arbuscular mycorrhizae (AM) and ectomycorrhizae (EM) are the most important mycorrhizae in agricultural and natural ecosystems. AM and EM fungi use inorganic NH4+ and NO3-, and most EM fungi are capable of using organic nitrogen. The heavier stable isotope N-15 is discriminated against during biogeochemical and biochemical processes. Differences in N-15 (atom%) or delta(15)N (parts per thousand) provide nitrogen movement information in an experimental system. A range of 20 to 50% of one-way N-transfer has been observed from legumes to nonlegumes. Mycorrhizal fungal mycelia can extend from one plant's roots to another plant's roots to form common mycorrhizal networks (CMNs). Individual species, genera, even families of plants can be interconnected by CMNs. They are capable of facilitating nutrient uptake and flux. Nutrients such as carbon, nitrogen and phosphorus and other elements may then move via either AM or EM networks from plant to plant. Both N-15 labeling and N-15 natural abundance techniques have been employed to trace N movement between plants interconnected by AM or EM networks. Fine mesh (25similar to45 mum) has been used to separate root systems and allow only hyphal penetration and linkages but no root contact between plants. In many studies, nitrogen from N-2-fixing mycorrhizal plants transferred to non-N-2-fixing mycorrhizal plants (one-way N-transfer). In a few studies, N is also transferred from non-N-2-fixing mycorrhizal plants to N-2-fixing mycorrhizal plants (two-way N-transfer). There is controversy about whether N-transfer is direct through CMNs, or indirect through the soil. The lack of convincing data underlines the need for creative, careful experimental manipulations. Nitrogen is crucial to productivity in most terrestrial ecosystems, and there are potential benefits of management in soil-plant systems to enhance N-transfer. Thus, two-way N-transfer warrants further investigation with many species and under field conditions.
Resumo:
Arbuscular mycorrhizae are symbiotic associations among glomalean fungi and plant roots that often lead to enhanced water and nutrient uptake and plant growth. We describe experiments to test whether inoculum potential of arbuscular mycorrhizal (AM) fungal communities varies spatially within a broadleaf temperate forest, and also whether there is variability in the effectiveness of AM fungal communities in enhancing seedling growth. Inoculum potential of arbuscular mycorrhizal fungi in a temperate broad-leaved forest did not vary significantly among sites. Inoculum potential, measured as the extent to which the roots of red maple seedlings that had been germinated on sterile sand and then transplanted into the forest, were colonized by AM fungi, was similar in floodplain and higher elevation sites. It was as similar under ectomycorrhizal oaks as it was under red maples and other AM tree species. It was also similar among sites with deciduous understory shrubs with arbuscular mycorrhizae (spicebush, Lindera benzoin) and those with evergreen vegetation with ericoid mycorrhizae (mountain laurel, Kalmia latifolia). Where spicebush was the dominant understory shrub, inoculum potential was greater under gaps in the canopy than within the understory. Survivorship of transplanted red maple seedlings varied significantly over sites but was not strongly correlated with measures of inoculum potential. In a greenhouse growth experiment, arbuscular mycorrhizal fungal communities obtained from tree roots from the forest had different effects on plant growth. Seedlings inoculated with roots of red maple had twice the leaf area after 10 wk of growth compared to the AM community obtained from roots of southern red oaks. Thus, although there appears to be little heterogeneity in inoculum potential in the forest, there are differences in the effectiveness of different inocula. These effects have the potential to affect tree species diversity in forests by modifying patterns of seedling recruitment.
Resumo:
Vesicular carriers for intracellular transport associate with unique sets of accessory molecules that dictate budding and docking on specific membrane domains. Although many of these accessory molecules are peripheral membrane proteins, in most cases the targeting sequences responsible for their membrane recruitment have yet to be identified. We have previously defined a novel Golgi targeting domain (GRIP) shared by a family of coiled-coil peripheral membrane Golgi proteins implicated in membrane trafficking. We show here that the docking site for the GRIP motif of p230 is a specific domain of Golgi. membranes. By immunoelectron microscopy of HeLa cells stably expressing a green fluorescent protein (GFP)-p230(GRIP) fusion protein, we show binding specifically to a subset of membranes of the trans-Golgi network (TGN). Real-time imaging of live HeLa cells revealed that the GFP-p230(GRIP) was associated with highly dynamic tubular extensions of the TGN, which have the appearance and behaviour of transport carriers. To further define the nature of the GRIP membrane binding site, in vitro budding assays were performed using purified rat liver Golgi membranes and cytosol from GFP-p230(GRIP) transfected cells. Analysis of Golgi-derived vesicles by sucrose gradient fractionation demonstrated that GFP-p230(GRIP) binds to a specific population of vesicles distinct from those labelled for beta -COP or gamma -adaptin. The GFP-p230(GRIP) fusion protein is recruited to the same vesicle population as full-length p230, demonstrating that the GRIP domain is solely proficient as a targeting signal for membrane binding of the native molecule. Therefore, p230 GRIP is a targeting signal for recruitment to a highly selective membrane attachment site on a specific population of trans-Golgi network tubulovesicular carriers.
Resumo:
Our previous investigations of possible lung mechanisms underlying the effectiveness of nebulized morphine for the relief of dyspnoea, have shown a high density of non-conventional opioid binding sites in rat airways with similar binding characteristics (opioid alkaloid-sensitive, opioid peptide-insensitive) to that of putative mu(3)-opioid receptors on immune cells. To investigate whether these lung opioid binding sites are functional receptors, this study was designed to determine (using superfusion) whether morphine modulates the K+-evoked release of the pro-inflammatory neuropeptide, substance P (SP), from rat peripheral airways. Importantly, K+-evoked SP release was Ca2+-dependent, consistent with vesicular release. Submicromolar concentrations of morphine (1 and 200 nM) inhibited K+-evoked SP release from rat peripheral airways in a naloxone (1 mu M) reversible manner. By contrast, 1 mu M morphine enhanced K+-evoked SP release and this effect was not reversed by 1 mu M naloxone. However, 100 mu M naloxone not only antagonized the facilitatory effect of 1 mu M morphine on K+-evoked SP release from rat peripheral airways but it inhibited release to a similar extent as 200 nM morphine. It is possible that these latter effects are mediated by non-conventional opioid receptors located on mast cells, activation of which causes naloxone-reversible histamine release that in turn augments the release of SP from sensory nerve terminals in the peripheral airways. Clearly, further studies are required to investigate this possibility. (C) 1997 Academic Press Limited.
Resumo:
The Sec1p-like/Munc18 (SM) protein Munc18a binds to the neuronal t-SNARE Syntaxin1A and inhibits SNARE complex assembly. Tomosyn, a cytosolic Syntaxin1A-binding protein, is thought to regulate the interaction between Syntaxin1A and Munc18a, thus acting as a positive regulator of SNARE assembly. In the present study we have investigated the interaction between b-Tomosyn and the adipocyte SNARE complex involving Syntaxin4/SNAP23/VAMP-2 and the SM protein Munc18c, in vitro, and the potential involvement of Tomosyn in regulating the translocation of GLUT4 containing vesicles, in vivo. Tomosyn formed a high affinity ternary complex with Syntaxin4 and SNAP23 that was competitively inhibited by VAMP-2. Using a yeast two-hybrid assay we demonstrate that the VAMP-2-like domain in Tomosyn facilitates the interaction with Syntaxin4. Overexpression of Tomosyn in 3T3-L1 adipocytes inhibited the translocation of green fluorescent protein-GLUT4 to the plasma membrane. The SM protein Munc18c was shown to interact with the Syntaxin4 monomer, Syntaxin4 containing SNARE complexes, and the Syntaxin4/Tomosyn complex. These data suggest that Tomosyn and Munc18c operate at a similar stage of the Syntaxin4 SNARE assembly cycle, which likely primes Syntaxin4 for entry into the ternary SNARE complex.
Resumo:
Several published studies claim that high rates of N-2 fixation occur in sugarcane and sorghum, and have ascribed this result to infection by the bacterium Gluconacetobacter diazotrophicus, abetted by arbuscular mycorrhizal infection ( Glomus clarum). These results have not been confirmed within Australia. In this study, G. diazotrophicus was detected in stalks of field-grown sugarcane in Australia ( based on phenotypic tests, and a PCR test using species-specific primers developed to amplify a fragment of the G. diazotrophicus 16S rRNA gene). Isolates were nitrogenase positive ( acetylene reduction assay) in vitro. However, in glasshouse trials involving inoculation of sugarcane setts with G. diazotrophicus, co-inoculation with mycorrhizae, and plant growth under low N status, recovery of bacteria from maturing plants was variable. At 165 days from planting, no appreciable N-2-fixation, as assessed by dry weight increment, N budget, or N-15 ratio, of either an Australian or a Brazilian cultivar of sugarcane, or a sorghum cultivar, was achieved. We conclude that a N-2-fixing sugarcane - G. diazotrophicus association is not easily achievable, being primarily limited by a lack of infection.
Resumo:
The genus Intusatrium Durio & Manter, 1968 is redefined based on a re-examination of paratypes of the type-species, I. robustum Durio & Manter, 1968, and is considered monotypic with characteristic terminal genitalia: internal seminal vesicle elongate tubular, with rather thick wall, divided by slight change in wall thickness into longer proximal and shorter distal region; pars prostatica subcylindrical; ejaculatory duct relatively short, with wrinkled/wall. The genus Postlepidapedon Zdzitowiecki, 1993 is redefined and Intusatrium secundum Durio & Manter, 1968 is attributed to it as a new combination. Postlepidapedon secundum n. comb. is redescribed from a paratype and new material from Choerodon graphicus. P. spissum n. sp. from Choerodon venustus, C. cyanodus, C. fasciatus and C. schoenleinii is recognised on the basis of its thick-walled internal seminal vesicle. I! uberis n. sp. from Choerodon schoenleinii and C. venustus is distinguished by the shape and contents of the cirrus-sac with narrow, convoluted internal seminal vesicle, large vesicular pars prostatica and short, muscular ejaculatory duct. A new genus, Gibsonivermis, erected for Intusatrium berryi Gibson, 1987, is characterised by the elongate narrow cirrus-sac and a uroproct. G. berryi n. comb. is redescribed from Sillago ciliata, S. maculata and Sillago sp.
Resumo:
This is a study in the rat of the distribution of specific neurotransmitters in neurones projecting from the substantia nigra reticulata (SNR) to the ventrolateral (VL) and ventromedial (VM) thalamic nuclei. Individual axons projecting from the SNR to these thalamic nuclei have also been reconstructed following small injection of the anterograde tracer dextran biotin into the the SNR. Analysis of reconstructions revealed two populations of SNR neurones projecting onto the VL and VM thalamic nuclei. One group projects directly onto the VM and VL, and the other projects to the VM/VL and to the parafascicular nucleus. In another set of experiments Fluoro-Gold was injected into the VL/VM to label SNR projection neurones retrogradely, and immunohistochemistry was performed to determine the distribution of choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT), gamma -aminobutyric acid (GABA), and glutamate in Fluoro-Gold-labelled SNR projection neurones. Most SNR-VL/VM thalamic projection neurones were immunoreactive to acetylcholine or glutamate, whereas only 25% of the projection neurones were found to be immunoreactive to GABA. (C) 2001 Wiley-Liss, Inc.
Resumo:
The intracellular assembly site for flaviviruses in currently not known but is presumed to be located within the lumen of the rough endoplasmic reticulum (RER), Building on previous studies involving immunofluorescence (IF) and cryoimmunoelectron microscopy of Kunjin virus (KUN)-infected cells, we sought to identify the steps involved in the assembly and maturation of KUN. Thus, using antibodies directed against envelope protein E in IF analysis, we found the accumulation of E within regions coincident with the RER and endosomal compartments. Immunogold labeling of cryosections of infected cells indicated that E and minor envelope protein prM were localized to reticulum membranes continuous with KUN-induced convoluted membranes (CM) or paracrystalline arrays (PC) and that sometimes the RER contained immunogold-labeled virus particles. Both proteins were also observed to be labeled in membranes at the periphery of the induced CIM or PC structures, but the latter were very seldom labeled internally. Utilizing drugs that inhibit protein and/or membrane traffic throughout the cell, we found that the secretion of KUN particles late in infection was significantly affected in the presence of brefeldin A and that the infectivity of secreted particles was severely affected in the presence of monensin and N-nonyl-deoxynojirimycin. Nocodazole did not appear to affect maturation, suggesting that microtubules play no role in assembly or maturation processes. Subsequently, we showed that the exit of intact virions from the RER involves the transport of individual virions within individual vesicles en route to the Golgi apparatus. The results suggest that the assembly of virions occurs within the lumen of the RER and that subsequent maturation occurs via the secretory pathway.
Resumo:
Jembrana disease virus (JDV) is a newly isolated and characterised bovine lentivirus. It causes an acute disease in Ball cattle (Bos javanicus). which can be readily transmitted to susceptible cattle with 17% mortality. There is as yet no treatment or preventive vaccine. We have developed a gene transfer vector system based on JDV that has three components. The first of the components is a bicistronic transfer vector plasmid that was constructed to contain cis-sequences from the JDV genome, including 5 '- and 3 ' -long terminal repeats (LTRs), 0.4 kb of truncated gag and 1.1 kb of 3 ' -env, a multiple cloning site to accommodate the gene(s) of interest for transfer, and an internal ribosome entry site plus the neomycin phosphotransferase (Neo) gene cassette for antibiotic selection. The second element is a packaging plasmid that contains trans-sequences. including gag, pol. vif, tar and rev: but without the env and packaging signals. The third is a plasmid encoding the G glycoprotein of vesicular stomatitis virus (VSV-G) to supply the vector an envelope for pseudotyping. Cotransfection of 293T cells with these three plasmid components produced VSV-G pseudotyped. disabled, replication defective, bicistronic JDV vectors encoding the green fluorescent protein (EGFP) and the Neo resistance selection maker simultaneously with a titre range of (0.4-1.2) x 10(6) CFU/ml. Transduction of several replicating primary and transformed cells from cattle, primate and human sources and importantly growth-arrested cells with the JDV vectors showed high efficiency of EGFP gene transfer at 35-75%, which was stable and the expression of EGFP was long term. Furthermore, these JDV vectors were designed to suit the inclusion and expression of genes corresponding to JDV specific proteins, such as gag or env, for the development of vaccines for Jembrana disease. This strategy should also be applicable to other bovine diseases as wall. The design and construction of the JDV vector system should facilitate the study of the lentivirology and pathogenesis of the diseases associated with JDV or other bovine virus infections. To our knowledge, this is the first such vector system developed from a cattle virus. (C) 2001 Elsevier Science B.V. All rights reserved.