8 resultados para Meteorological radar

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dust storm of 23 October 2002 covered most of eastern Australia and carried one of the largest recorded dust loads in Australia. In the 6 months leading up to the event, severe drought conditions in eastern Australia, plus above average maximum temperatures resulted in high potential evapo-transpiration rates, producing severe soil moisture deficits and reduced vegetation cover. Although increased wind speeds associated with a fast moving cold front were the meteorological driving force, these winds speeds were lower than those for the previously documented large dust storms. The dust storm was 2400 km long, up to 400 km across and 1.5-2.5 km in height. The plume area was estimated at 840,860 km 2 and the dust load at 0900 h was 3.35-4.85 million tones (Mt). These dust load estimates are highly sensitive to assumptions, regarding visibility-dust concentration relationships, vertical dust concentration profiles and dust ceilings. The event is examined using meteorological records, remote sensing and air quality monitoring. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Velocity and absorption tomograms are the two most common forms of presentation of radar tomographic data. However, mining personnel, geophysicists included, are often unfamiliar with radar velocity and absorption. In this paper, general formulae are introduced, relating velocity and attenuation coefficient to conductivity and dielectric constant. The formulae are valid for lossy media as well as high-resistivity materials. The transformation of velocity and absorption to conductivity and dielectric constant is illustrated via application of the formulae to radar tomograms from the Hellyer zinc-lead-silver mine, Tasmania, Australia. The resulting conductivity and dielectric constant tomograms constructed at Hellyer demonstrated the potential of radar tomography to delineate sulphide ore zones. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper discusses the bistatic radar parameters for the case when the transmitter is a satellite emitting communication signals. The model utilises signals from an Iridium-like low earth orbiting satellite system. The maximum detection range, when thermal noise-limited, is discussed at the theoretical level and these results are compared with experimentation. Satellite-radar signal levels and the power of ground reflections are evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional (3D) synthetic aperture radar (SAR) imaging via multiple-pass processing is an extension of interferometric SAR imaging. It exploits more than two flight passes to achieve a desired resolution in elevation. In this paper, a novel approach is developed to reconstruct a 3D space-borne SAR image with multiple-pass processing. It involves image registration, phase correction and elevational imaging. An image model matching is developed for multiple image registration, an eigenvector method is proposed for the phase correction and the elevational imaging is conducted using a Fourier transform or a super-resolution method for enhancement of elevational resolution. 3D SAR images are obtained by processing simulated data and real data from the first European Remote Sensing satellite (ERS-1) with the proposed approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resistively loaded helical antennas, used in the normal mode and horizontally polarised, are modelled using the moment method above typical lossy ground. The distributed resistive loading was adjusted to maintain a two octave bandwidth. The centre frequency of 1 m dipoles was reduced from 250 MHz for the straight resistive wire to 50 MHz for a helix of pitch 2.5 cm and diameter 5 cm. The reduction in efficiency required to maintain the bandwidth for this helix was 12 dB. This agrees reasonably with the theory for small antennas in free space. The results were also verified by comparing measurements performed on a monopole resistively loaded helical antenna in a watertank with the numerical model used elsewhere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relationships between weather parameters andairborne pollen loads of Pinus inBrisbane, Australia have been investigated overthe five-year period, June 1994–May 1999.Pinus pollen accounts for 4.5% of the annualairborne pollen load in Brisbane where thePinus season is confined to the winter months,July–early September. During the samplingperiod loads of 11–>100 grains m3 wererecorded on 24 days and 1–10 grains m3 on204 days. The onset and peak dates wereconsistent across each season, whereas the enddates varied. The onset of the Pinuspollen season coincided with the coolestaverage monthly temperatures (< 22°C),lowest rainfall (< 7mm), and four weeks afterdaily minimum temperatures fell to 5–9°Cin late autumn. Correlations obtained betweendaily airborne Pinus pollen counts andtemperature/rainfall parameters show thatdensities of airborne Pinus pollen arenegatively correlated with maximum temperature(p < 0.0001), minimum temperature (p < 0.0001)and rainfall (p < 0.05) during the mainpollination period. The mean duration of eachpollen season was 52 days; longer seasons wereshown to be directly related to lower averageseasonal maximum temperatures (r2 = 0.85,p = 0.025). These results signify that maximumand minimum temperatures are the majorparameters that influence the onset andduration of the Pinus pollen season inthe environs of Brisbane. Respiratory allergyis an important health issue in Brisbane,Australia, but it remains unknown whether ornot airborne Pinus pollen is acontributing factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For ground penetrating radar (GPR), smaller antennas would provide considerable practical advantages. Some of which are: portability; ease of use; and higher spatial sampling. A theoretical comparison of the fundamental limits of a small electric field antenna and a small magnetic field antenna shows that the minimum Q constraints are identical. Furthermore, it is shown that only the small magnetic loop antenna can be constructed to approach, arbitrarily closely, the fundamental minimum Q limit. This is achieved with the addition of a high permeability material which reduces energy stored in the magnetic fields. This is of special interest to some GPR applications. For example, applications requiring synthetic aperture data collection would benefit from the increased spatial sampling offered by electrically smaller antennas. Low frequency applications may also benefit, in terms of reduced antenna dimensions, by the use of electrically small antennas. Under these circumstances, a magnetic type antenna should be considered in preference to the typical electric field antenna. Numerical modeling data supports this assertion.