46 resultados para Metal selectivity
em University of Queensland eSpace - Australia
Resumo:
1. The relative permeability of the native P2X receptor channel to monovalent and divalent inorganic and organic cations was determined from reversal potential measurements of ATP-evoked currents in parasympathetic neurones dissociated from rat submandibular ganglia using the dialysed whole-cell patch clamp technique. 2. The P2X receptor-channel exhibited weak selectivity among the alkali metals with a selectivity sequence of Na+ > Li+ > Cs+ > Rb+ > K+, and permeability ratios relative to Cs+ (P-X/P-Cs) ranging from 1. 11 to 0.86. 3. The selectivity for the divalent alkaline earth cations was also weak with the sequence Ca2+ > Sr2+ > Ba2+ > Mn2+ > Mg2+. ATP-evoked currents were strongly inhibited when the extracellular divalent cation concentration was increased. 4, The calculated permeability ratios of different ammonium cations are higher than those of the alkali metal cations. The permeability sequence obtained for the saturated organic cations is inversely correlated with the size of the cation. The unsaturated organic cations have a higher permeability than that predicted by molecular size. 5. Acidification to pH 6.2 increased the ATP-induced current amplitude twofold, whereas alkalization to 8.2 and 9.2 markedly reduced current amplitude. Cell dialysis with either anti-P2X(2) and/or anti-P2X(4) but not anti-P2X(1) antibodies attenuated the ATP-evoked current amplitude. Taken together, these data are consistent with homomeric and/or heteromeric P2X(2) and P2X(4) receptor subtypes expressed in rat submandibular neurones. 6. The permeability ratios for the series of monovalent organic cations, with the exception of unsaturated cations, were approximately related to the ionic size. The relative permeabilities of the monovalent inoganic and organic cations tested are similar to those reported previously for cloned rat P2X2 receptors expressed in mammalian cells.
Resumo:
The Jameson Cell is a high intensity flotation device, which utilises induced air from the atmosphere. It was developed jointly by Mount Isa Mines and Professor Graeme Jameson of the University of Newcastle in the 1980s. It is proven to generate fine bubbles, in the order of 300 to 500 µm, in a high intensity, high shear and compact zone contained in the downcomer. This aerated mixture exits the downcomer into the pulp zone, which is the quiescent mineral and gangue separation zone. A number of Australian base metal flotation circuits feature a reverse flotation stage at the head of the circuit. Testwork and plant operating data has shown that the use of a Jameson Cell in the prefloat cleaner application has further improved prefloat gangue recovery and selectivity. Operation of a Jameson Cell in a carbonaceous/pyrite prefloat cleaner duty at the Mt Isa copper concentrator increased copper recovery and reduced pyrite in the copper concentrate. Testwork at Zinifex Century Zinc Mine showed a decrease in zinc losses by the utilisation of Jameson Cell prefloat cleaner. Appraisal of a Jameson Cell in a scalping role within the Mt Isa Copper Concentrator indicated significant benefits could be achieved.
Resumo:
Lactic acid (LA) has significant market potential for many industries including food, cosmetics, pharmaceuticals, medical and biodegradable materials. Production of LA usually begins with the fermentation of glucose but subsequent stages for the enrichment of lactic acid are complex and energy intensive and could be minimised using water selective membrane technology. In this work, we trialled a highly selective hydrostable carbonised template molecular sieve silica (CTMSS) membrane for the dehydration of a 15 vol% aqueous lactic acid solution with 0.1 vol% glucose. CTMSS membrane films were developed by dip-coating ceramic substrates with silica sols made using the acid catalysed sol-gel process. Permeation was performed by feeding LA/glucose solution to the membrane cell at 18°C in a standard pervaporation setup. The membrane showed selective transport of water from the aqueous feed to the permeate while glucose was not detected. CTMSS membrane permeate flux stabilised at 0.2 kg.m-2.hr-1 in 3.9 hours, and reduced LA to lower than 0.2 vol%. Flux through the CTMSS micropores was activated, displaying increased initial flux to 1.58 kg.m-2.hr-1 at 60°C. To enrich a 1 l.min-1 stream to 85% LA in a single stage, a minimum membrane area of 324 m2 would be required at 18°C. Increased operating temperature to 80°C significantly reduced this area to 24 m2 but LA levels in the permeate stream increased to 0.5 vol%. The highly selective CTMSS membrane technology is an ideal candidate for LA purification. CTMSS membrane systems operate stably in aqueous systems leading to potential cost reductions in LA processing for future markets.
Resumo:
The otoliths and lenses of the temperate damselfish Parma microlepis (Gunther) (Pomacentridae) showed similar differences in trace-metal profile for selected locations along the coast of New South Wales, Australia. Otoliths and lenses displayed a differential ability to accumulate metals. Metal concentrations were ranked differently in the two structures (e.g. Sr > Ba > Pb > Rb > Hg in otoliths, and Hg > Sr similar or equal to Rb > Pb > Ba in lenses), and where similar metals were accumulated, they were accumulated at vastly different concentrations (e.g. Ba concentrations in otoliths are a thousand-fold greater than in lenses). Analyses of the otoliths and lenses of P. microlepis from locations close to Sydney and up to 100 kill from the city were able to distinguish amongst these locations with respect to a number of metals, namely Ba, Mn and Hg. Multivariate analyses of otolith and lens data gave similar results among locations (agreement was obtained for Ii out of 15 pair-wise comparisons), and differences were attributable to the differential ability of the two structures to accumulate metals such as Mn and Hg. Trace-metal differences between locations were found to coincide with the proximity of sewage (including industrial waste) and petroleum storage facilities to the different locations.
Resumo:
The interlayer magnetoresistance of the quasi-two-dimensional metal alpha-(BEDT-TTF)(2)KHg(SCN)(4) is considered. In the temperature range from 0.5 to 10 K and for fields up to 10 T the magnetoresistance has a stronger temperature dependence than the zero-field resistance. Consequently Kohler's rule is not obeyed for any range of temperatures or fields. This means that the magnetoresistance cannot be described in terms of semiclassical transport on a single Fermi surface with a single scattering time. Possible explanations for the violations of Kohler's rule are considered, both within the framework of semiclassical transport theory and involving incoherent interlayer transport. The issues considered are similar to those raised by the magnetotransport of the cuprate superconductors. [S0163-1829(98)13219-8].
Resumo:
1 Voltage-operated calcium channel (VOCC) antagonists are effective antihypertensive and antianginal agents but they also depress myocardial contractility. 2 We compared four L-type calcium channel antagonists, felodipine, nifedipine, amlodipine and verapamil and a relatively T-type selective calcium channel antagonist, mibefradil, on human and rat isolated tissue assays to determine their functional vascular to cardiac tissue selectivity (V/C) ratio. 3 The V/C ratio was calculated as the ratio of the IC50 value of the antagonist that reduced (by 50%) submaximally contracted (K+ 62 mM) human small arteries from the aortic vasa vasorum (vascular, V) mounted in a myograph and the IC50 value of the antagonist that reduced (-)-isoprenaline (6 nM) submaximally stimulated human right atrial trabeculae muscle (cardiac, C) mounted in organ chambers. 4 The average pIC(50) Values (-log IC50 M) for the human vascular preparations were felodipine 8.30, nifedipine 7.78, amlodipine 6.64, verapamil 6.26 and mibefradil 6.22. The average pIC(50) values for the cardiac muscle were felodipine 7.21, nifedipine 6.95, verapamil 6.91, amlodipine 5.94, and mibefradil 4.61. 5 The V/C ratio calculated as antilog [pIC(50)V-pIC(50)C] is thus mibefradil 41, felodipine 12, nifedipine 7, amlodipine 5 and verapamil 0.2. 6 In rat small mesenteric arteries the pIC(50) values for the five drugs were similar to the values for human vasa vasorum arteries contracted by K+ 62 mM. However for methoxamine (10 mu M) contraction in the rat arteries the pIC(50) values were lower for felodipine 7.24 and nifedipine 6.23, but similar for verapamil 6.13, amlodipine 6.28 and mibefradil 5.91. 7 In conclusion in the human tissue assays, the putative T-channel antagonist mibefradil shows the highest vascular to cardiac selectivity ratio; some 3 fold higher than the dihydropyridine, felodipine, and some 200 fold more vascular selective than the phenylalkylamine, verapamil. This favourable vascular to cardiac selectivity for mibefradil, from a new chemical class of VOCC antagonist, may be explained by its putative T-channel selectivity.
Resumo:
Electron paramagnetic resonance (EPR) spectra and X-ray absorption (EXAFS and XANES) data have been recorded for the manganese enzyme aminopeptidase P (AMPP, PepP protein) from Escherichia coli. The biological function of the protein, a tetramer of 50-kDa subunits, is the hydrolysis of N-terminal Xaa-Pro peptide bonds. Activity assays confirm that the enzyme is activated by treatment with Mn2+. The EPR spectrum of Mn2+-activated AMPP at liquid-He temperature is characteristic of an exchange-coupled dinuclear Mn(II) site, the Mn-Mn separation calculated from the zero-field splitting D of the quintet state being 3.5 (+/- 0.1) Angstrom. In the X-ray absorption spectrum of Mn2+-activated AMPP at the Mn K edge, the near-edge features are consistent with octahedrally coordinated Mn atoms in oxidation state +2. EXAFS data, limited to k less than or equal to 12 Angstrom(-1) by traces of Fe in the protein, are consistent with a single coordination shell occupied predominantly by O donor atoms at an average Mn-ligand distance of 2.15 Angstrom, but the possibility of a mixture of O and N donor atoms is not excluded. The Mn-Mn interaction at 3.5 Angstrom, is not detected in the EXAFS, probably due to destructive interference from light outer-shell atoms. The biological function, amino acid sequence and metal-ion dependence of E. coli AMPP are closely related to those of human prolidase, an enzyme that specifically cleaves Xaa-Pro dipeptides. Mutations that lead to human prolidase deficiency and clinical symptoms have been identified. Several known inhibitors of prolidase also inhibit AMPP. When these inhibitors are added to Mn2+-activated AMPP, the EPR spectrum and EXAFS remain unchanged. It can be inferred that the inhibitors either do not bind directly to the Mn centres, or substitute for existing Mn ligands without a significant change in donor atoms or coordination geometry. The conclusions from the spectroscopic measurements on AMPP have been verified by, and complement, a recent crystal structure analysis.
Resumo:
A trinuclear macrocyclic complex is reported from the metal directed condensation between melamine, formaldehyde and the Cu-II complex of a linear tetraamine.
Resumo:
The potent, conformationally biased C5a agonist peptide YSFKPMPLaR (C5a(65-74), Y65, F67, P69, P71, D-Ala73) was used as a template to gain insight into the nature and importance of lysine at position 68 in the peptide-receptor interaction. A panel of YSFKPMPLaR analogs with systematic substitutions for Lys68 was evaluated for C5a receptor (C5aR) binding affinity and activation in two well-characterized assay systems: human polymorphonuclear leukocytes (PMNs) and human fetal artery. In addition, we determined the activity of these new analogs in transfected rat basophilic leukemia (RBL) cells in which the Glu at position 199 of the C5aR (wtGlu199) was replaced by a Gin (C5aR-Gln199) or a Lys (C5aR-Lys199). Our results indicated that Lys68 in YSFKPMPLaR plays an important role in binding the C5aR expressed on PMNs and RBL cells. Furthermore, the data indicated that Lys68 interacted with Glu199 of the C5aR in PMNs and RBL cells. In human fetal artery, however, Lys68 substitutions had little or no effect on activity, which suggested that the receptor conformation may be different in this tissue. Thus, the interaction between Lys68 of the decapeptide agonist and Glu199 of the C5aR may be cell type-specific and may form the molecular basis for tissue-specific responses to C5a agonists.
Resumo:
This paper reports the results of an experimental investigation into the fluidized-bed coating of cylindrical metal specimens using two types of thermoplastic powders, Rilsan(R) PA11, a nylon-11 powder produced by Elf Atochem, France and Cotene(TM) 4612, a linear low density polyethylene powder produced by J.R Courtenay (New Zealand). The effects of dipping time, preheat temperature and particle size distribution on coating thickness and surface finish were investigated. Consistent trends in coating thickness growth with dipping time were obtained for both nylon-11 and polyethylene powders with increases in coating thickness with preheat temperature. For the same preheat temperature, the lower melting point of polyethylene results in thicker coatings compared to those of nylon-11. There is a negligible change in the coating thickness for sieved powders compared to that for unsieved powders. A pre-heat temperatures of between 240 degrees C and 300 degrees C is necessary to achieve an acceptable surface finish with both nylon-11 and polyethylene powders. To minimize errors in achieving the desired coating thickness, dipping times shorter than 2 s are not recommended. The use of graphs of coating thickness versus dipping time in combination with the coating surface roughness plots presented in this paper enable the optimal choice of pre-heat temperature and dipping time to achieve acceptable surface finish. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
We describe a strategy for the selection and amplification of foreign gene expression in Chinese hamster ovary (CHO) cells employing a metallothionein gene-containing expression vector. This report describes an amplification procedure that results in an enrichment of clones exhibiting high levels of recombinant protein production and reduces the labour required for screening recombinant cell lines.
Resumo:
The eye lenses of Parma microlepis from the rocky barrens of Sydney (New South Wales, Australia) were found to contain Ba, Hg, Rb, and Sr at concentrations above the quantitative detection limits of solution-based inductively-coupled plasma-mass spectrometry (ICP-MS). Lenses were separated into the hard central nucleus and the softer surrounding cortex. Nuclei contained lower (equal for Ba) concentrations of these metals. Biochemical analysis of the protein composition of these lenses revealed differences in the ratio of gamma-crystallin to beta-crystallin in the lens nucleus and cortex. These changes were shown to be attributable both to protein degradation and changes in protein synthesis as fish age. Such changes may lead to the loss of sequestered metals from older cell layers, or change the affinity of new layers for particular trace metals. Differential binding affinities of these crystallins may, therefore, partially account for trace-metal differences observed in the lens nucleus and cortex.
Resumo:
The new macrocyclic ligand trans-6-(9-anthracenylmethylamino)-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecan-13-amine has been synthesized and characterised as its copper(II) complex and the crystal structure of this complex has been determined. Fluorescence of the anthracenyl group of the macrocycle is quenched in its free base form and when complexed with Cu-II. Fluorescence returns when Lewis acids such as H+ and Zn-II are added to solutions of the ligand, indicating that photoinduced electron transfer from the amine lone pairs is responsible for fluorescence quenching in the free base form. By contrast, fluorescence of the complex is quenched by intramolecular electronic energy transfer.