3 resultados para Metacercariae

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recruiting coral reef fish larvae from 38 species and 19 families from New Caledonia were examined for parasites. We found 13 parasite species (Platyhelminthes: Monogenea, Cestoda and Trematoda) but no acanthocephalan, crustacean or nematode parasites. Over 23% of individual fish were infected. Didymozoid metacercariae were the most abundant parasites. We conclude that most of the parasites are pelagic species that become 'lost' once the fish larvae have recruited to the reef. Larval coral reef fish probably contribute little to the dispersal of the parasites of the adult fish so that parasite dispersal is more difficult than that of the fish themselves. (C) 2000 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nine species of Stephanostomum are described from Australian and Southern Pacific marine fishes: Stephanostomum madhaviae n. sp. [syn. S. orientalis of Madhavi ( 1976)] from Caranx ignobilis, off Hope Island, Queensland, with 30-34 circum-oral spines and vitelline fields almost reaching to the posterior extremity of the cirrus-sac; S. bicoronatum (Stossich, 1883) from Argyrosomus hololepidotus, off Southport Broadwater, Queensland; S. votonimoli n. sp. from Scomberoides lysan, off Moorea, French Polynesia ( type-locality) and Western Samoa, with 33-38 circum-oral spines, a uroproct and the vitelline fields not reaching the cirrus-sac; S. nyoomwa n. sp. from Caranx sexfasciatus, off Heron Island, Queensland, with 33-38 circum-oral spines, a uroproct and the vitelline fields reaching the cirrus-sac; S. cobia n. sp. from Rachycentron canadum, off Heron Island, with 36 circum-oral spines, a uroproct and the vitelline fields reaching the cirrus-sac; S. petimba Yamaguti, 1970 from Seriola hippos, off Rottnest Island, Western Australia; S. pacificum ( Yamaguti, 1951) from Pseudocaranx wrighti, off Fremantle, Western Australia; S. aaravi n. sp. from Lethrinus miniatus, off Heron Island, with 36-39 circumoral spines, probably a uroproct and the vitelline fields reaching the ventral sucker; S. pagrosomi ( Yamaguti, 1939) from L. nebulosus, L. miniatus and L. atkinsoni off Heron Island, Pagrus auratus, off Rottnest Island, Western Australia and Gymnocranius audleyi, off Heron Island. A digest of described species of Stephanostomum is included as an appendix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adult bucephalid trematodes (Digenea) generally only occur in piscivorous fish. Within labrid fishes they are very rare, however, we have found them in labrid cleaner fish that feed on the ectoparasites of fish. We surveyed 969 labrid fishes from the tropical Pacific and found bucephalids only in cleaners (Lahroides dimidiatus, L. bicolor, and Bodianus axillaris) and none in piscivores. The prevalences of bucephalids in L. dimidiatus at Lizard Island, Heron Island, Orpheus Island (all on the Great Barrier Reef), New Caledonia, and Moorea (French Polynesia) were 51, 47, 67, 56, and 67%, respectively. All of the L. bicolor examined from Moorea were infected. Bucephalids were highly prevalent in all size classes of L. dimidiatus from Lizard Island. Bucephalids were found in a 1.6-cm long juvenile L. dimidiatus, in which, piscivory is highly unlikely. We examined the literature on the worldwide bucephalid fauna in labrids and all hosts were found to be cleaners (Symphodus tinca, S. mediterraneus, L. dimidiatus, L. bicolor, and Bodianus axillaris) except Notolabrus parilus, whose ecology is unknown. We suggest that cleaners eat bucephalid metacercariae directly from the exterior surface of client fish during cleaning interactions. This is the first evidence of digeneans in the diet of L. dimidiatus, and the first study to show this novel form of parasite transmission where infective stages are eaten as a result of cleaning behaviour. Cleaning-mediated parasite transmission may result in behavioural modification of second intermediate hosts because clients and parasites both benefit from transmission. If the infection is costly to cleaners and acquired during cheating behaviour, then this parasite might regulate mutualism. Alternatively, if infective stages are targeted, infection by these bucephalids may be a negative consequence of an honest foraging strategy.