21 resultados para Mesh segmentation
em University of Queensland eSpace - Australia
Resumo:
Mixture models implemented via the expectation-maximization (EM) algorithm are being increasingly used in a wide range of problems in pattern recognition such as image segmentation. However, the EM algorithm requires considerable computational time in its application to huge data sets such as a three-dimensional magnetic resonance (MR) image of over 10 million voxels. Recently, it was shown that a sparse, incremental version of the EM algorithm could improve its rate of convergence. In this paper, we show how this modified EM algorithm can be speeded up further by adopting a multiresolution kd-tree structure in performing the E-step. The proposed algorithm outperforms some other variants of the EM algorithm for segmenting MR images of the human brain. (C) 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
This paper considers the problem of tissue classification in 3D MRI. More specifically, a new set of texture features, based on phase information, is used to perform the segmentation of the bones of the knee. The phase information provides a very good discrimination between the bone and the surrounding tissues, but is usually not used due to phase unwrapping problems. We present a method to extract textural information from the phase that does not require phase unwrapping. The textural information extracted from the magnitude and the phase can be combined to perform tissue classification, and used to initialise an active shape model, leading to a more precise segmentation.
Resumo:
To study the biocompatibility of surgical meshes for use in pelvic reconstructive surgery using an animal model. Eight different types of mesh: Atrium, Dexon, Gynemesh, IVS tape, Prolene, SPARC tape, TVT tape and Vypro II, were implanted into the abdominal walls of rats for 3 months' duration. Explanted meshes were assessed, using light microscopy, for parameters of rejection and incorporation. Type 1 (Atrium, Gynemesh, Prolene, SPARC and TVT) and type 3 (Vypro II, Dexon and IVS) meshes demonstrated different biocompatible properties. Inflammatory cellular response and fibrosis at the interface of mesh and host tissue was most marked with Vypro II and IVS. All type 1 meshes displayed similar cellular responses despite markedly different mesh architecture. The inflammatory response and fibrous reaction in the non-absorbable type 3 meshes tested (IVS and Vypro II) was more marked than the type 1 meshes. The increased inflammatory and fibrotic response may be because of the multifilamentous polypropylene components of these meshes. Material and filament composition of mesh is the main factor in determining cellular response.
Resumo:
The texture segmentation techniques are diversified by the existence of several approaches. In this paper, we propose fuzzy features for the segmentation of texture image. For this purpose, a membership function is constructed to represent the effect of the neighboring pixels on the current pixel in a window. Using these membership function values, we find a feature by weighted average method for the current pixel. This is repeated for all pixels in the window treating each time one pixel as the current pixel. Using these fuzzy based features, we derive three descriptors such as maximum, entropy, and energy for each window. To segment the texture image, the modified mountain clustering that is unsupervised and fuzzy c-means clustering have been used. The performance of the proposed features is compared with that of fractal features.
Resumo:
Texture-segmentation is the crucial initial step for texture-based image retrieval. Texture is the main difficulty faced to a segmentation method. Many image segmentation algorithms either can’t handle texture properly or can’t obtain texture features directly during segmentation which can be used for retrieval purpose. This paper describes an automatic texture segmentation algorithm based on a set of features derived from wavelet domain, which are effective in texture description for retrieval purpose. Simulation results show that the proposed algorithm can efficiently capture the textured regions in arbitrary images, with the features of each region extracted as well. The features of each textured region can be directly used to index image database with applications as texture-based image retrieval.
Resumo:
Terrain can be approximated by a triangular mesh consisting millions of 3D points. Multiresolution triangular mesh (MTM) structures are designed to support applications that use terrain data at variable levels of detail (LOD). Typically, an MTM adopts a tree structure where a parent node represents a lower-resolution approximation of its descendants. Given a region of interest (ROI) and a LOD, the process of retrieving the required terrain data from the database is to traverse the MTM tree from the root to reach all the nodes satisfying the ROI and LOD conditions. This process, while being commonly used for multiresolution terrain visualization, is inefficient as either a large number of sequential I/O operations or fetching a large amount of extraneous data is incurred. Various spatial indexes have been proposed in the past to address this problem, however level-by-level tree traversal remains a common practice in order to obtain topological information among the retrieved terrain data. A new MTM data structure called direct mesh is proposed. We demonstrate that with direct mesh the amount of data retrieval can be substantially reduced. Comparing with existing MTM indexing methods, a significant performance improvement has been observed for real-life terrain data.
Resumo:
Deformable models are a highly accurate and flexible approach to segmenting structures in medical images. The primary drawback of deformable models is that they are sensitive to initialisation, with accurate and robust results often requiring initialisation close to the true object in the image. Automatically obtaining a good initialisation is problematic for many structures in the body. The cartilages of the knee are a thin elastic material that cover the ends of the bone, absorbing shock and allowing smooth movement. The degeneration of these cartilages characterize the progression of osteoarthritis. The state of the art in the segmentation of the cartilage are 2D semi-automated algorithms. These algorithms require significant time and supervison by a clinical expert, so the development of an automatic segmentation algorithm for the cartilages is an important clinical goal. In this paper we present an approach towards this goal that allows us to automatically providing a good initialisation for deformable models of the patella cartilage, by utilising the strong spatial relationship of the cartilage to the underlying bone.
Resumo:
Identifying water wastage in forms of leaks in a water distribution network of any city becomes essential as droughts are presenting serious threats to few major cities. In this paper, we propose a deployment of sensor network for monitoring water flow in any water distribution network. We cover the issues related with designing such a dedicated sensor network by considering types of sensors required, sensors' functionality, data collection, and providing computation serving as leak detection mechanism. The main focus of this paper is on appropriate network segmentation that provides the base for hierarchical approach to pipes' failure detection. We show a method for sensors allocation to the network in order to facilitate effective pipes monitoring. In general, the identified computational problem belongs to hard problems. The paper shows a heuristic method to build effective hierarchy of the network segmentation.
Resumo:
This paper presents an automated segmentation approach for MR images of the knee bones. The bones are the first stage of a segmentation system for the knee, primarily aimed at the automated segmentation of the cartilages. The segmentation is performed using 3D active shape models (ASM), which are initialized using an affine registration to an atlas. The 3D ASMs of the bones are created automatically using a point distribution model optimization scheme. The accuracy and robustness of the segmentation approach was experimentally validated using an MR database of fat suppressed spoiled gradient recall images.
Resumo:
Wireless Mesh Networks (WMNs), based on commodity hardware, present a promising technology for a wide range of applications due to their self-configuring and self-healing capabilities, as well as their low equipment and deployment costs. One of the key challenges that WMN technology faces is the limited capacity and scalability due to co-channel interference, which is typical for multi-hop wireless networks. A simple and relatively low-cost approach to address this problem is the use of multiple wireless network interfaces (radios) per node. Operating the radios on distinct orthogonal channels permits effective use of the frequency spectrum, thereby, reducing interference and contention. In this paper, we evaluate the performance of the multi-radio Ad-hoc On-demand Distance Vector (AODV) routing protocol with a specific focus on hybrid WMNs. Our simulation results show that under high mobility and traffic load conditions, multi-radio AODV offers superior performance as compared to its single-radio counterpart. We believe that multi-radio AODV is a promising candidate for WMNs, which need to service a large number of mobile clients with low latency and high bandwidth requirements.