8 resultados para Meretrix meretrix Linnaeus
em University of Queensland eSpace - Australia
Resumo:
Factors influencing the rate of cannibalism in juvenile blue-swimmer crabs Portunus pelagicus were investigated under controlled conditions using time-lapse video recordings. This study was undertaken to improve blue-swimmer crab culture and experimentally addressed (1) prey vulnerability (2) cannibal-victim interactions, and (3) activity patterns of juveniles in varying degrees of refuge. Crabs used in the study were aged 15 weeks and sorted into two size classes; small (less than or equal to 60 mm carapace width (CW)) and large (greater than or equal to65 mm CW) of a similar sex ratio. Vulnerability and thus survival was influenced by body size variation, moult stage and refuge availability. Crabs with carapace width less than or equal to 60 mm were more vulnerable than larger individuals, as indicated by significant differences in survival rates. As predicted, juveniles in transition stages associated with ecdysis were especially vulnerable. Premoult (redliner) crabs appeared to be in a high state of agitation as evidenced by the frequency of agonistic encounters and this may be a contributing factor to the high mortality observed at this critical premoult stag. increases in refuge density increased survival of juveniles proportionally, indicating that the quantity of shelter is important for reducing cannibalism in this species. Cannibal-victim interactions were frequently asymmetrical in terms of size and moult stage. Cannibals were significantly heavier than victims, and were predominantly at intermoult stage. Sexual biases among cannibals and victims were not found in this study. Activity patterns of juveniles were influenced by the experimental conditions. Crabs provided with high refuge showed reduced aggressive activity and increased time spent resting, but unchanged locomotion or feeding activity. Regular grading as well as the presence of suitable shelter for newly moulted crabs is recommended for improving culture of P. pelagicus. Research into inducing synchronous moulting may also yield promising results. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The spermatozoon of Apus apus is typical of non-passerines in many respects. Features shared with palaeognaths and the Galloanserae are the conical acrosome, shorter than the nucleus; the presence of a proximal as well as distal centriole; the elongate midpiece with mitochondria grouped around an elongate distal centriole; and the presence of a fibrous or amorphous sheath around the principal piece of the axoneme. The perforatorium and endonuclear canal are lost in A. apus as in some other non-passerines. All non-passerines differ from palaeognaths in that the latter have a transversely ribbed fibrous sheath whereas in non-passerines it is amorphous, as in Apus, or absent. The absence of an annulus is an apomorphic but homoplastic feature of swift, psittaciform, gruiform and passerine spermatozoa. The long distal centriole, penetrating the entire midpiece, is a remarkably plesiomorphic feature of the swift spermatozoa, known elsewhere only in palaeognaths. The long centriole of Apus, if not a reversal, would be inconsistent with the former placement of the Apodiformes above the Psittaciformes from DNA-DNA hybridization. In contrast to passerines, in A. apus the microtubules in the spermatid are restricted to a transient single row encircling the cell. The form of the spermatozoon fully justifies the exclusion of swifts from the passerine family Hirundinidae.
Resumo:
The sperm of Caprimulgus europaeus is typical of other nonpasserines in many respects. Features shared with Paleognathae and Galloanserae are the conical acrosome, shorter than the nucleus; the presence of a perforatorium and endonuclear canal; the presence of a proximal as well as distal centriole; the elongate midpiece with mitochondria grouped around a central axis (here maximally six mitochondria in similar to 10 tiers); and the presence of a fibrous or amorphous sheath around the principal piece of the axoneme. A major (apomorphic) difference from paleognaths and galloanserans is the short distal centriole, the midpiece being penetrated for most of its length by the axoneme and for only a very short proximal portion by the centriole. Nonpasserines differ from paleognaths in that the latter have a transversely ribbed fibrous sheath, whereas in nonpasserines it is amorphous, as in Caprimulgus, or absent. The absence of an annulus is an apomorphic feature of Caprimulgus, apodiform, psittaciform, gruiform, and passerine sperm, homoplastic in at least some of these. In contrast to passerines, in Caprimulgus the cytoplasmic microtubules in the spermatid are restricted to a transient longitudinal manchette. The structure of the spermatid and spermatozoon is consistent with placement of the Caprimulgidae near the Psittacidae, but is less supportive of close proximity to the Apodidae, from DNA-DNA hybridization and some other analyses.
Resumo:
The chalcid, Oomyzus sokolowskii Kurdjumov has been recorded in many parts of the world as a major larval-pupal, gregarious endoparasitoid of the diamondback moth, Plutella xylostella (Linnaeus), a serious pest of brassica vegetable crops worldwide. This study investigated intraspecific variation between two populations of O. sokiolowskii, one from Cape Verde Islands, West Africa and the other from Hangzhou, China. In all crosses and backcrosses between the two geographical populations, the numbers of progeny and sex ratio of progeny were similar to those obtained within each of the populations, demonstrating complete reproductive compatibility between the two populations. The two populations showed similar responses to temperature with respect to development time and survival of immature stages. Observations on the interactions between the two O. sokolowskii populations and Cotesia plutellae (Kurdjumov), another major parasitoid of P. xylostella, showed that neither population could achieve successful parasitism of P. xylostella larvae already parasitized by C. plutellac. However, both O. sokolowskii populations could achieve hyperparasitism by ovipositing into a mid-late stage larva of C. plutellae developing inside the primary host. Contrary to earlier reports, no evidence of intraspecific variations in ability to hyperparasitize between these two populations of O. sokolowskii was found.
Resumo:
The sanguinicolids Paracardicoloides yamagutii Martin, 1974 and Plethorchis acanthus Martin, 1975 were obtained from their definitive hosts, Anguilla reinhardtii Steindachner and Mugil cephalus Linnaeus (respectively) in the tributaries of the Brisbane River, Queensland, Australia. Two putative sanguinicolid cercariae were collected from a hydrobiid gastropod, Posticobia brazieri Smith, in the same waters. The two cercariae differ markedly in size and the form of their sporocysts. Both putative cercariae develop in the digestive gland of Po. brazieri. The ITS2 rDNA region from these sanguinicolids and a Clinostomum species (utilised as an outgroup due to the close morphological similarities between the cercarial stages of the Clinostomidae and the Sanguinicolidae) were sequenced and aligned. Comparison of the ITS2 sequences showed one cercaria to be that of P. yamagutii. This is the first sanguinicolid life history determined by a molecular method. P. yamagutii is the fourth sanguinicolid known to utilise a freshwater hydrobiid gastropod as its intermediate host. ITS2 rDNA is effective in distinguishing sanguinicolids at the species level.
Resumo:
Coral bleaching (the loss of symbiotic dinoflagellates from reef-building corals) is most frequently caused by high-light and temperature conditions. We exposed the explants of the hermatypic coral Stylophora pistillata to four combinations of light and temperature in late spring and also in late summer. During mid-summer, two NOAA bleaching warnings were issued for Heron Island reef (Southern Great Barrier Reef, Australia) when sea temperature exceeded the NOAA bleaching threshold, and a 'mild' (in terms of the whole coral community) bleaching event occurred, resulting in widespread S. pistillata bleaching and mortality. Symbiotic dinoflagellate biomass decreased by more than half from late spring to late summer (from 2.5x10(6) to 0.8x10(6) dinoflagellates cm(2) coral tissue), and those dinoflagellates that remained after summer became photoinhibited more readily (dark-adapted F (V) : F (M) decreased to (0.3 compared with 0.4 in spring), and died in greater numbers (up to 17% dinoflagellate mortality compared with 5% in the spring) when exposed to artificially elevated light and temperature. Adding exogenous antioxidants (D-mannitol and L-ascorbic acid) to the water surrounding the coral had no clear effect on either photoinhibition or symbiont mortality. These data show that light and temperature stress cause mortality of the dinoflagellate symbionts within the coral, and that susceptibility to light and temperature stress is strongly related to coral condition. Photoinhibitory mechanisms are clearly involved, and will increase through a positive feedback mechanism: symbiont loss promotes further symbiont loss as the light microenvironment becomes progressively harsher.
Resumo:
'White syndrome' is considered to be the most prevalent coral disease on the Great Barrier Reef, characterised by rapid rates of lesion progression and high levels of colony mortality. This study investigated the production and translocation of photoassimilates towards white syndrome lesions (WSLs) and artificially inflicted lesions in healthy and diseased colonies of tabular Acropora spp. to determine the intra-colonial response to white syndrome using C-14 labelling. Translocation of C-14 labelled photoassimilates was preferentially orientated away from active WSLs, with minimal C-14 activity observed in the lesion borders, whilst artificial lesions (ALs) created directly opposite WSL borders showed significantly higher C-14 activity, suggesting active translocation of photoassimilates for tissue regeneration. Transport of photoassimilates in healthy coral colonies was preferentially oriented towards ALs with a higher perimeter-area ratio, although translocation towards WSL boundaries was minimal even though the lesion perimeter was often the width of the colony (> 200 cm). We suggest that the preferential orientation of photoassimilates away from WSLs may represent a deliberate strategy by the colony to induce a 'shutdown reaction' in order to preserve intra-colonial resources within areas of the colony that are more likely to survive and recover.