22 resultados para Melt Pelletization

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wet agglomeration processes have traditionally been considered an empirical art, with great difficulties in predicting and explaining observed behaviour. Industry has faced a range of problems including large recycle ratios, poor product quality control, surging and even the total failure of scale up from laboratory to full scale production. However, in recent years there has been a rapid advancement in our understanding of the fundamental processes that control granulation behaviour and product properties. This review critically evaluates the current understanding of the three key areas of wet granulation processes: wetting and nucleation, consolidation and growth, and breakage and attrition. Particular emphasis is placed on the fact that there now exist theoretical models which predict or explain the majority of experimentally observed behaviour. Provided that the correct material properties and operating parameters are known, it is now possible to make useful predictions about how a material will granulate. The challenge that now faces us is to transfer these theoretical developments into industrial practice. Standard, reliable methods need to be developed to measure the formulation properties that control granulation behaviour, such as contact angle and dynamic yield strength. There also needs to be a better understanding of the flow patterns, mixing behaviour and impact velocities in different types of granulation equipment. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dissolution of a sugar (sucrose as a model) with higher melting point was studied in a molten food polyol (sorbitol as a model) with lower melting point, both in anhydrous state. A DSC and optical examination revealed the dissolution of anhydrous sucrose crystals (mp 192 degreesC) in anhydrous sorbitol (mp 99 degreesC) liquid melt. The sucrose-sorbitol crystal mixtures at the proportions of 10, 30, 60, 100 and 150 g of sucrose per 100 g of sorbitol were heat scanned in a DSC to above melting endotherm of sorbitol but well below the onset temperature of melting of sucrose at three different temperatures 110, 130 and 150 degreesC. The heat scanning modes used were with or without isothermal holding. The dissolution of sucrose in the sorbitol liquid melt was manifested by an increase in the glass transition temperature of the melt and corresponding decrease in endothermic melting enthalpy of sucrose. At given experimental conditions, as high as 25 and 85% of sucrose dissolved in the sorbitol melt during 1 h of isothermal holding at 110 and 150 degreesC, respectively. Optical microscopic observation also clearly showed the reduction in the size of sucrose crystals in sorbitol melt during the isothermal holding at those temperatures. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The yield behaviour of a series of melt-mixed polyethylene-modified montmorillonite nanocomposites has been studied as a function of temperature and strain rate and compared to the behaviour of the base polymer. The processing conditions used gave an intercalated structure as assessed by X-ray diffraction. Although there was a modest improvement in stiffness with clay content, the yield behaviour was insensitive to the addition of the clay. Both the base polymer and the nanocomposites showed double yield points. These were analysed as activated rate processes, with the activation energies consistent with the low strain yield point being associated with the alpha(2) molecular relaxation and the higher strain yield point with W axis slip. (C) 2003 Society of Chemical Industry.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The yield behavior of melt-mixed nanocomposites containing 5 wt % organically modified montmorillonite in matrices of a linear low-density polyethylene (LLDPE) or a modified polyethylene was studied as a function of the temperature. and strain rate. In the melt-mixed LLDPE nanocomposite, the montmorillonite showed a slight increase in the clay spacing, which suggested that the clay was at best intercalated. Transmission electron microscopy (TEM) images showed that the dispersion in this nanocomposite was poor. The use of the modified polyethylene promoted exfoliation of the clay tactoids in the nanocomposite, as assessed by X-ray diffraction and TEM. In both nanocomposites, the yield mechanisms were insensitive to the addition of the organoclay, even though modest increases in the modulus were produced. (c) 2006 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of binary Cu-X alloys (X = Fe, Cr, Si and Al) with alloying elements up to approximate to 12 at % for Fe and Cr, and = 20 at% for Al and Si were cast into thin ribbons (30-50 mu m thickness) by chill block melt spinning. The structural state of the as-cast ribbons was determined by X-ray diffraction (XRD) and microstructures of the quenched alloys were compared with the ingot equivalent, It was possible to achieve solid solution and fine dispersion of secondary phase beyond XRD detection up to approximate to 8 at% solute for Fe and Cr, which is beyond the expected concentration limits from equilibrium phase diagrams. The effects of alloying on resistivity and microhardness are also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of metal-matrix composites were formed by extrusion freeform, fabrication of a sinterable aluminum alloy in combination with silicon carbide particles and whiskers, carbon fibers, alumina particles, and hollow flyash cenospheres. Silicon carbide particles were most successful in that the composites retained high density with up to 20 vol% of reinforcement and the strength approximately doubles over the strength of the metal matrix alone. Comparison with simple models suggests that this unexpectedly high degree of reinforcement can be attributed to the concentration of small silicon carbide particles around the larger metal powder. This fabrication method also allows composites to be formed with hollow spheres that cannot be formed by other powder or melt methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is believed that surface instabilities can occur during the extrusion of linear low density polyethylene due to high extensional stresses at the exit of the die. Local crack development can occur at a critical stress level when melt rupture is reached. This high extensional stress results from the rearrangement of the flow at the boundary transition between the wall exit and the free surface. The stress is highest at the extrudate surface and decreases into the bulk of the material. The location of the region where the critical level is reached can determine the amplitude of the extrudate surface distortion, This paper studies the effect of wall slip on the numerically simulated extensional stress level at the die exit and correlates this to the experimentally determined amplitude of the surface instability. The effect of die exit radius and die wall roughness on extrusion surface instabilities is also correlated to the exit stress level in the same way. Whereas full slip may completely suppress the surface instability, a reduction in the exit stress level and instability amplitude is also shown for a rounded die exit and a slight increase in instability is shown to result from a rough die wall. A surface instability map demonstrates how the shear rate for onset of extrusion surface instabilities can be predicted on the basis of melt strength measurements and simulated stress peaks at the exit of the die. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Y-Ba-Cu-O samples with additions of Y2O3 and CeO2 were quenched during seeded isothermal melt processing and examined by optical microscopy and scanning electron microscopy. Large YBa2Cu3O7-y (Y123) particles in the starting powder were found to form a distinct type of melt during heating, which was unaffected by the Y2O3 or CeO2 additives. This type of melt later formed regions with a low concentration of Y2BaCuO5 (Y211) particles in the Y123 matrix. The maximum growth rate of Y123 that could be sustained in the sample was found to be lower in the melt formed from large Y123 particles, and this may lead to growth accidents and subgrains in some samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental studies have been undertaken, involving in situ observations of the interaction between cover gas mixtures and molten magnesium. It has been shown that, in the presence of sulphur hexafluoride (SF6), the contact angle between solid MgO and molten magnesium is reduced, resulting in the wetting of MgO by magnesium metal. In contrast, it was observed that the absence of SF6 results in a large contact angle, poor wetting of the MgO by magnesium metal and a non-adherent surface film. It is proposed that the formation of an adherent, protective surface film under a cover gas mixture containing SF6 is due to capillary forces acting within the film.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is considerable anecdotal evidence from industry that poor wetting and liquid distribution can lead to broad granule size distributions in mixer granulators. Current scale-up scenarios lead to poor liquid distribution and a wider product size distribution. There are two issues to consider when scaling up: the size and nature of the spray zone and the powder flow patterns as a function of granulator scale. Short, nucleation-only experiments in a 25L PMA Fielder mixer using lactose powder with water and HPC solutions demonstrated the existence of different nucleation regimes depending on the spray flux Psi(a)-from drop-controlled nucleation to caking. In the drop-controlled regime at low Psi(a) values. each drop forms a single nucleus and the nuclei distribution is controlled by the spray droplet size distribution. As Psi(a) increases, the distribution broadens rapidly as the droplets overlap and coalesce in the spray zone. The results are in excellent agreement with previous experiments and confirm that for drop-controlled nucleation. Psi(a) should be less than 0.1. Granulator flow studies showed that there are two powder flow regimes-bumping and roping. The powder flow goes through a transition from bumping to roping as impeller speed is increased. The roping regime gives good bed turn over and stable flow patterns. This regime is recommended for good liquid distribution and nucleation. Powder surface velocities as a function of impeller speed were measured using high-speed video equipment and MetaMorph image analysis software, Powder surface velocities were 0.2 to 1 ms(-1)-an order of magnitude lower than the impeller tip speed. Assuming geometrically similar granulators, impeller speed should be set to maintain constant Froude number during scale-up rather than constant tip speed to ensure operation in the roping regime. (C) 2002 Published by Elsevier Science B.V.