5 resultados para Mediterranean Spanish urban system
em University of Queensland eSpace - Australia
Resumo:
Background: There is increasing evidence that many populations in the developing world are in epidemiologic transition with the subsequent emergence of more affluent disease states. The Heart of Soweto Study will systematically investigate the emergence of heart disease (HD) in a large urban population in South Africa. Methods: Part of the conurbation of Johannesburg, South Africa, Soweto is a predominantly Black African community of I million individuals. During an initial two year period, all individuals presenting to the local Baragwanath Hospital (3500 beds) with any form of HD will be studied. Demographic and diagnostic coding data in those with pre-established HD will form an abbreviated clinical registry of > 12,000 prevalent cases. Similarly, socio-demographic, clinical and diagnostic data (e.g. echocardiography and ECG) in newly diagnosed patients will form a more detailed clinical registry of > 5000 incident cases. Sub-studies of the relationship between HIV status and H D and the optimal management of chronic heart failure will also be performed. Results: These data will provide a unique insight into the causes and consequences of a broad spectrum of HD-related conditions in a developing world community in epidemiologic transition. Initially documented Population rates, in addition to detailed examinations of the underlying risk factors and causes of HD-related morbidity/mortality will provide an important platform for future stages of the study: a community-based, population screening program and culturally specific primary and secondary programs of care. Conclusion: There is an urgent need to systematically track the emergence of HD in the developing world. Initially involving more than 15,000 individuals, the unique Heart of Soweto Study has the potential to provide a wealth of information in this regard. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Land disposal is commonly used for urban and industrial wastewater, largely due to the high costs involved in alternative treatments or disposal systems. However, the viability of such systems depends on many factors, including the composition of the effluent water, soil type, the plant species grown, growth rate, and planting density. The objective of this study is to establish whether land disposal of nitrogen (N) rich effluent using an agroforestry system is sustainable, and determine the effect of irrigation rate and tree planting density on the N cycle and subsequent N removal. We examined systems for the sustainable disposal of a high strength industrial effluent. The challenge was to leach the salt, by using a sufficiently high rate of irrigation, while simultaneously ensuring that N did not leach from the soil profile. We describe the N balance for two plant systems irrigated with effluent, one comprising Eucalyptus tereticornis and Eucalyptus moluccana and a Rhodes grass (Chloris gayana) pasture, and the other, Rhodes grass pasture alone. Nitrogen balance was assessed from N inputs in effluent and rainfall, accumulation of N in the plant biomass, changes in soil N storage, N loss in run-off water, denitrification and N loss to the groundwater by deep-drainage. Biomass production was estimated from allometric relationships derived from yearly destructive harvesting of selected trees. The N content of that biomass was then calculated from measured N content of the various plant parts, and their mass. Approximately 300 kg N/ha/yr was assimilated into tree biomass at a planting density of 2500 tree/ha of E. moluccana. In addition to tree assimilation, pasture growth between the tree rows, which was regularly harvested, contributed substantially to N uptake. If the trees were harvested after two years of growth and grass harvested regularly, biomass removal of N by the mixed system would be about 700 kg N/ha/yr. The results of this study show that the current system of effluent disposal is not sustainable as the nitrate leaching from the soil profile far exceeds standards set out by the ANZECC guidelines. Hence additional means of N removal will need to be implemented. Biological N removal is an area that warrants further studies as it is aimed at reducing N levels in the effluent before irrigation. This will complement the current agroforestry system.