9 resultados para Measurement theory
em University of Queensland eSpace - Australia
Resumo:
In this article, we review recent modifications to Jeffrey Gray's (1973, 1991) reinforcement sensitivity theory (RST), and attempt to draw implications for psychometric measurement of personality traits. First, we consider Gray and McNaughton's (2000) functional revisions to the biobehavioral systems of RST Second, we evaluate recent clarifications relating to interdependent effects that these systems may have on behavior, in addition to or in place of separable effects (e.g., Corr 2001; Pickering, 1997). Finally, we consider ambiguities regarding the exact trait dimension to which Gray's It reward system corresponds. From this review, we suggest that future work is needed to distinguish psychometric measures of (a) fear from anxiety and (b) reward-reactivity-from trait impulsivity. We also suggest, on the basis of interdependent system views of RST and associated exploration using formal models, that traits that are based upon RST are likely to have substantial intercorrelations. Finally, we advise that more substantive work is required to define relevant constructs and behaviors in RST before we can be confident in our psychometric measures of them.
Resumo:
We present a new model for the continuous measurement of a coupled quantum dot charge qubit. We model the effects of a realistic measurement, namely adding noise to, and filtering, the current through the detector. This is achieved by embedding the detector in an equivalent circuit for measurement. Our aim is to describe the evolution of the qubit state conditioned on the macroscopic output of the external circuit. We achieve this by generalizing a recently developed quantum trajectory theory for realistic photodetectors [P. Warszawski, H. M. Wiseman, and H. Mabuchi, Phys. Rev. A 65, 023802 (2002)] to treat solid-state detectors. This yields stochastic equations whose (numerical) solutions are the realistic quantum trajectories of the conditioned qubit state. We derive our general theory in the context of a low transparency quantum point contact. Areas of application for our theory and its relation to previous work are discussed.
Resumo:
We experimentally determine weak values for a single photon's polarization, obtained via a weak measurement that employs a two-photon entangling operation, and postselection. The weak values cannot be explained by a semiclassical wave theory, due to the two-photon entanglement. We observe the variation in the size of the weak value with measurement strength, obtaining an average measurement of the S-1 Stokes parameter more than an order of magnitude outside of the operator's spectrum for the smallest measurement strengths.
Resumo:
The specific surface area (SSA) of single-walled carbon nanotubes (SWNTs) has been measured by different groups. Fujiwara et al. measured the SSA of SWNT bundles by using nitrogen and oxygen as adsorbates, and found that the SSA from O2-adsorption was 6.6% larger than that from N2-adsorption for the same SWNT sample [1]. Also Wei et al. [2] measured the SSA of HiPco SWNTs by using O2, N2 and Ar, and found that, for the same samples, Vm(Ar) > Vm(O2) > Vm(N2), here Vm is the monolayer adsorption capacity at the standard conditions of temperature and pressure (STP). Those research results indicate that, for the same SWNT sample, its measured surface area depends on the employed adsorbate.
Resumo:
We consider a universal set of quantum gates encoded within a perturbed decoherence-free subspace of four physical qubits. Using second-order perturbation theory and a measuring device modelled by an infinite set of harmonic oscillators, simply coupled to the system, we show that continuous observation of the coupling agent induces inhibition of the decoherence due to spurious perturbations. We thus advance the idea of protecting or even creating a decoherence-free subspace for processing quantum information.
Resumo:
In spite of the prominence assigned to innovation in the strategic marketing literature particularly in the area of competitive strategy there have been several inadequacies in the conceptualization and measurement of the innovation construct. Responding to the need for a comprehensive measure, this paper attempts to develop and validate a measure for organisational innovation. Addressing the need to capture both the degree and type of innovation, as well as the synergistic influence of innovation types on performance outcomes, this paper proposes operationalising organisational innovation as a multidimensional construct. The proposed measure has a complex higher order structure that captures the variance in its dimensions that are different forms manifested by the construct. The measure also captures the synergistic impact of different innovation types on competitive advantage. The implications for theory, limitations and directions for future research are presented.
Resumo:
Drawing on extensive academic research and theory on clusters and their analysis, the methodology employed in this pilot study (sponsored by the Welsh Assembly Government’s Economic Research Grants Assessment Board) seeks to create a framework for reviewing and monitoring clusters in Wales on an ongoing basis, and generate the information necessary for successful cluster development policy to occur. The multi-method framework developed and tested in the pilot study is designed to map existing Welsh sectors with cluster characteristics, uncover existing linkages, and better understand areas of strength and weakness. The approach adopted relies on synthesising both quantitative and qualitative evidence. Statistical measures, including the size of potential clusters, are united with other evidence on input-output derived inter-linkages within clusters and to other sectors in Wales and the UK, as well as the export and import intensity of the cluster. Multi Sector Qualitative Analysis is then designed for competencies/capacity, risk factors, markets, types and crucially, the perceived strengths of cluster structures and relationships. The approach outlined above can, with the refinements recommended through the review process, provide policy-makers with a valuable tool for reviewing and monitoring individual sectors and ameliorating problems in sectors likely to decline further.
Resumo:
The optical forces in optical tweezers can be robustly modeled over a broad range of parameters using generalsed Lorenz–Mie theory. We describe the procedure, and show how the combination of experimental measurement of properties of the trap coupled with computational modeling, can allow unknown parameters of the particle—in this case, the refractive index—to be determined.
Resumo:
Conventional detection scheme for self-mixing sensors uses an integrated photodiode within the laser package to monitor the self mixing signal. This arrangement can be simplified by directly obtaining the self-mixing signals across the laser diode itself and omitting the photodiode. This work reports on a Vertical-Cavity Surface-Emitting Laser (VCSEL) based selfmixing sensor using the laser junction voltage to obtain the selfmixing signal. We show that the same information can be obtained with only minor changes to the extraction circuitry leading to potential cost saving with reductions in component costs and complexity and significant increase in bandwidth favoring high speed modulation. Experiments using both photo current and voltage detection were carried out and the results obtained show good agreement with the theory.