4 resultados para Measurement of performance
em University of Queensland eSpace - Australia
Resumo:
Free drug measurement and pharmacodymanic markers provide the opportunity for a better understanding of drug efficacy and toxicity. High-performance liquid chromatography (HPLC)-mass spectrometry (MS) is a powerful analytical technique that could facilitate the measurement of free drug and these markers. Currently, there are very few published methods for the determination of free drug concentrations by HPLC-MS. The development of atmospheric pressure ionisation sources, together with on-line microdialysis or on-line equilibrium dialysis and column switching techniques have reduced sample run times and increased assay efficiency. The availability of such methods will aid in drug development and the clinical use of certain drugs, including anti-convulsants, anti-arrhythmics, immunosuppressants, local anaesthetics, anti-fungals and protease inhibitors. The history of free drug measurement and an overview of the current HPLC-MS applications for these drugs are discussed. Immunosuppressant drugs are used as an example for the application of HPLC-MS in the measurement of drug pharmacodynamics. Potential biomarkers of immunosuppression that could be measured by HPLC-MS include purine nucleoside/nucleotides, drug-protein complexes and phosphorylated peptides. At the proteomic level, two-dimensional gel electrophoresis combined with matrix-assisted laser desorption/ionisation time-of-flight (TOF) MS is a powerful tool for identifying proteins involved in the response to inflammatory mediators. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The authors describe a reverse-phase high-performance liquid chromatography-electrospray-tandem mass spectrometry method for the measurement of nicotine in human plasma. Samples (500 muL) with added deuterium-labeled d(3)-nicotine as an internal standard (IS) were treated with a 2-step process of ether extraction (6 mL) followed by back-extraction into 0.1% formic acid (50 muL). Chromatography was performed on a phenyl Novapak column with a mobile phase consisting of 50% 10 mM ammonium fortriate (pH 3.3) and acetonitrile (50:50, vol/vol). A flow rate of 0.2 mL/min resulted in a total analysis time of 5 minutes per sample. Mass spectrometric detection was by selected reactant monitoring (nicotine m/z 163.2 --> 130.2; IS m/z 166.2 --> 87.2). The assay was linear from 0.5 to 100 mug/L (r > 0.993, n = 9). The accuracy and imprecision of the method for quality control sampleswere 87.5% to 113% and < 10.2%, respectively. Interday accuracy and imprecision at the limit of quantification (0.5 mug/L) was 113% and 7.2% (n = 4). The process efficiency for nicotine in plasma was > 75%. The method described has good process efficiency, stabilized nicotine, avoided concentration steps, and most importantly minimized potential contamination. Further, we have established that water-based standards and controls are interchangeable with plasma-based samples. This method was used successfully to measure the pharmacokinetic profiles of subjects involved in the development of an aerosol inhalation drug delivery system.
Resumo:
A force balance system for measuring lift, thrust and pitching moment has been used to measure the performance of fueled scramjet-powered vehicle in the T4 Shock Tunnel at The University of Queensland. Detailed measurements have been made of the effects of different fuel flow rates corresponding to equivalence ratios between 0.0 and 1.5. For proposed scramjet-powered vehicles, the fore-body of the vehicle acts as part of the inlet to the engine and the aft-body acts as the thrust surface for the engine. This type of engine-integrated design leads to a strong coupling between the performance of the engine and the lift and trim characteristics of the vehicle. The measurements show that the lift force increased by approximately 50% and centre-of-pressure changed by approximately 10% of the chord of the vehicle when the equivalence ratio varied from 0.0 to 1.0. The results demonstrate the importance of engine performance to the overall aerodynamic characteristics of engine-integrated scramjet vehicles and that such characteristics can be measured in a shock tunnel.