3 resultados para Measurement of Activity
em University of Queensland eSpace - Australia
Resumo:
Purpose: To evaluate the validity of a uniaxial accelerometer (MTI Actigraph) for measuring physical activity in people with acquired brain injury (ABI) using portable indirect calorimetry (Cosmed K4b(2)) as a criterion measure. Methods: Fourteen people with ABI and related gait pattern impairment (age 32 +/- 8 yr) wore an MTI Actigraph that measured activity (counts(.)min-(1)) and a Cosmed K4b(2) that measured oxygen consumption (mL(.)kg(-1.)min(-1)) during four activities: quiet sitting (QS) and comfortable paced (CP), brisk paced (BP), and fast paced (FP) walking. MET levels were predicted from Actigraph counts using a published equation and compared with Cosmed measures. Predicted METs for each of the 56 activity bouts (14 participants X 4 bouts) were classified (light, moderate, vigorous, or very vigorous intensity) and compared with Cosmed-based classifications. Results: Repeated-measures ANOVA indicated that walking condition intensities were significantly different (P < 0.05) and the Actigraph detected the differences. Overall correlation between measured and predicted METs was positive, moderate, and significant (r = 0.74). Mean predicted METs were not significantly different from measured for CP and BP, but for FP walking, predicted METs were significantly less than measured (P < 0.05). The Actigraph correctly classified intensity for 76.8% of all activity bouts and 91.5% of light- and moderate-intensity bouts. Conclusions: Actigraph counts provide a valid index of activity across the intensities investigated in this study. For light to moderate activity, Actigraph-based estimates of METs are acceptable for group-level analysis and are a valid means of classifying activity intensity. The Actigraph significantly underestimated higher intensity activity, although, in practice, this limitation will have minimal impact on activity measurement of most community-dwelling people with ABI.
Resumo:
We carried out a retrospective review of the videoconference activity records in a university-run hospital telemedicine studio. Usage records describing videoconferencing activity in the telemedicine studio were compared with the billing records provided by the telecommunications company. During a seven-month period there were 211 entries in the studio log: 108 calls made from the studio and 103 calls made from a far-end location. We found that 103 calls from a total of 195 calls reported by the telecommunications company were recorded in the usage log. The remaining 92 calls were not recorded, probably for one of several reasons, including: failed calls-a large number of unrecorded calls (57%) lasted for less than 2 min (median 1.6 min); origin of videoconference calls-calls may have been recorded incorrectly in the usage diary (i.e. as being initiated from the far end, when actually initiated from the studio); and human error. Our study showed that manual recording of videoconference activity may not accurately reflect the actual activity taking place. Those responsible for recording and analysing videoconference activity, particularly in large telemedicine networks, should do so with care.