9 resultados para Mean-motion resonance
em University of Queensland eSpace - Australia
Resumo:
OBJECTIVES We sought to determine whether the transmural extent of scar (TES) explains discordances between dobutamine echocardiography (DbE) and thallium single-photon emission computed tomography (Tl-SPECT) in the detection of viable myocardium (VM). BACKGROUND Discrepancies between DbE and Tl-SPECT are often attributed to differences between contractile reserve and membrane integrity, but may also reflect a disproportionate influence of nontransmural scar on thickening at DbE. METHODS Sixty patients (age 62 +/- 12 years; 10 women and 50 men) with postinfarction left ventricular dysfunction underwent standard rest-late redistribution Tl-SPECT and DbE. Viable myocardium was identified when dysfunctional segments showed Tl activity >60% on the late-redistribution image or by low-dose augmentation at DbE. Contrast-enhanced magnetic resonance imaging (ceMRI) was used to divide TES into five groups: 0%, 75% of the wall thickness replaced by scar. RESULTS As TES increased, both the mean Tl uptake and change in wall motion score decreased significantly (both p < 0.001). However, the presence of subendocardial scar was insufficient to prevent thickening; >50% of segments still showed contractile function with TES of 25% to 75%, although residual function was uncommon with TES >75%. The relationship of both tests to increasing TES was similar, but Tl-SPECT identified VM more frequently than DbE in all groups. Among segments without scar or with small amounts of scar (50% were viable by SPECT. CONCLUSIONS Both contractile reserve and perfusion are sensitive to the extent of scar. However, contractile reserve may be impaired in the face of no or minor scar, and thickening may still occur with extensive scar. (C) 2004 by the American College of Cardiology Foundation.
Resumo:
We propose phase diagrams for an imbalanced (unequal number of atoms or Fermi surface in two pairing hyperfine states) gas of atomic fermions near a broad Feshbach resonance using mean-field theory. Particularly, in the plane of interaction and polarization we determine the region for a mixed phase composed of normal and superfluid components. We compare our prediction of phase boundaries with the recent measurement and find a good qualitative agreement.
Resumo:
Two-dimensional (2-D) strain (epsilon(2-D)) on the basis of speckle tracking is a new technique for strain measurement. This study sought to validate epsilon(2-D) and tissue velocity imaging (TVI)based strain (epsilon(TVI)) with tagged harmonic-phase (HARP) magnetic resonance imaging (MRI). Thirty patients (mean age. 62 +/- 11 years) with known or suspected ischemic heart disease were evaluated. Wall motion (wall motion score index 1.55 +/- 0.46) was assessed by an expert observer. Three apical images were obtained for longitudinal strain (16 segments) and 3 short-axis images for radial and circumferential strain (18 segments). Radial epsilon(TVI) was obtained in the posterior wall. HARP MRI was used to measure principal strain, expressed as maximal length change in each direction. Values for epsilon(2-D), epsilon(TVI), and HARP MRI were comparable for all 3 strain directions and were reduced in dysfunctional segments. The mean difference and correlation between longitudinal epsilon(2-D) and HARP MRI (2.1 +/- 5.5%, r = 0.51, p < 0.001) were similar to those between longitudinal epsilon(TVI), and HARP MRI (1.1 +/- 6.7%, r = 0.40, p < 0.001). The mean difference and correlation were more favorable between radial epsilon(2-D) and HARP MRI (0.4 +/- 10.2%, r = 0.60, p < 0.001) than between radial epsilon(TVI), and HARP MRI (3.4 +/- 10.5%, r = 0.47, p < 0.001). For circumferential strain, the mean difference and correlation between epsilon(2-D) and HARP MRI were 0.7 +/- 5.4% and r = 0.51 (p < 0.001), respectively. In conclusion, the modest correlations of echocardiographic and HARP MRI strain reflect the technical challenges of the 2 techniques. Nonetheless, epsilon(2-D) provides a reliable tool to quantify regional function, with radial measurements being more accurate and feasible than with TVI. Unlike epsilon(TVI), epsilon(2-D) provides circumferential measurements. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Background: left ventricular wall motion on 2d echo (2de) is usually scored visually. we sought to examine the determinants of visually assessed wall motion scoring on 2de by comparison with myocardial thickening quantified on MRI. Methods: using a 16 segment model, we studied 287 segments in 30 patients aged 61+/ -11 years (6 female), with ischaemic LV dysfunction (defined by at least 2 segments dysfunctional on 2de). 2de was performed in 5 views and wall motion scores (WMS) assigned: 1 (normal) 103 segments, 2 (hypokinetic) 93 segments, 3 (akinetic) 87 segments. MRI was used to measure end systolic wall thickness (ESWT), end diastolic wall thickness (EDWT) and percentage systolic wall thickening (SWT%) in the plane of the 2de and to assess WMS in the same planes visually. No patient had a clinical ischemic event between the tests. Results: visual assessment of wall motion by 2de and MRI showed moderate agreement (kappa = 0.425). Resting 2de wall motion correlated significantly (p
Resumo:
A phantom that can be used for mapping geometric distortion in magnetic resonance imaging (MRI) is described. This phantom provides an array of densely distributed control points in three-dimensional (3D) space. These points form the basis of a comprehensive measurement method to correct for geometric distortion in MR images arising principally from gradient field non-linearity and magnet field inhomogeneity. The phantom was designed based on the concept that a point in space can be defined using three orthogonal planes. This novel design approach allows for as many control points as desired. Employing this novel design, a highly accurate method has been developed that enables the positions of the control points to be measured to sub-voxel accuracy. The phantom described in this paper was constructed to fit into a body coil of a MRI scanner, (external dimensions of the phantom were: 310 mm x 310 mm x 310 mm), and it contained 10,830 control points. With this phantom, the mean errors in the measured coordinates of the control points were on the order of 0.1 mm or less, which were less than one tenth of the voxel's dimensions of the phantom image. The calculated three-dimensional distortion map, i.e., the differences between the image positions and true positions of the control points, can then be used to compensate for geometric distortion for a full image restoration. It is anticipated that this novel method will have an impact on the applicability of MRI in both clinical and research settings. especially in areas where geometric accuracy is highly required, such as in MR neuro-imaging. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The aim of this study was to quantify movements of Super 12 rugby players in competition because information on elite rugby players' movements is unavailable. Players were categorized into forwards [front (n = 16) and back row (n = 15)] and backs [inside (n = 9) and outside backs (n = 7)] and their movements analysed by video-based time motion analysis. Movements were classified as rest (standing, walking and jogging) and work (striding, sprinting, static exertion, jumping, lifting or tackling). The total time, number and duration of individual activities were assessed, with differences between groups evaluated using independent sample t-tests (unequal variances), while differences between halves were assessed with paired sample t-tests. Forwards had 7:47 min:s (95% confidence limits: 6:39 to 8:55 min:s, P
Resumo:
In modern magnetic resonance imaging, both patients and health care workers are exposed to strong. non-uniform static magnetic fields inside and outside of the scanner. In which body movement may be able to induce electric currents in tissues which could be potentially harmful. This paper presents theoretical investigations into the spatial distribution of induced E-fields in a tissue-equivalent human model when moving at various positions around the magnet. The numerical calculations are based on an efficient. quasi-static, finite-difference scheme. Three-dimensional field profiles from an actively shielded 4 T magnet system are used and the body model projected through the field profile with normalized velocity. The simulation shows that it is possible to induce E-fields/currents near the level of physiological significance under some circumstances and provides insight into the spatial characteristics of the induced fields. The methodology presented herein can be extrapolated to very high field strengths for the evaluation of the effects of motion at a variety of field strengths and velocities. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Objective: To evaluate the effectiveness of a programme of static positional stretches and positioning of the stroke-affected shoulder for maintaining shoulder external rotation and decreasing hemiplegic shoulder pain. Design: Randomized controlled trial with pretest and posttest design. Setting: Inpatient rehabilitation unit. Subjects: Thirty-two participants ( 17 treatment, 15 comparison) with a first time stroke who were admitted for rehabilitation. Interventions: Treatment participants completed a programme of static positional stretches of the stroke-affected shoulder twice daily and positioned the stroke-affected upper limb in an armrest support at all other times when seated. Main measures: The main outcome measures were pain-free range of motion into external rotation, pain in the stroke-affected shoulder at rest and with movement, motor recovery and functional independence. Results: All participants demonstrated a significant loss of external rotation ( P = 0.005) with no significant group differences. All participants demonstrated a significant improvement in motor recovery ( P < 0.01) and functional independence ( P < 0.01) with no significant group differences. There were no significant effects for pain. The comparison group recorded a decrease in mean pain reported with movement from admission to discharge, and the treatment group recorded an increase. Conclusions: Participation in the management programme did not result in improved outcomes. The results of this study do not support the application of the programme of static positional stretches to maintain range of motion in the shoulder. The effect of increasing pain for the treatment group requires further investigation.
Resumo:
In modern magnetic resonance imaging (MRI), both patients and radiologists are exposed to strong, nonuniform static magnetic fields inside or outside of the scanner, in which the body movement may be able to induce electric currents in tissues which could be possibly harmful. This paper presents theoretical investigations into the spatial distribution of induced E-fields in the human model when moving at various positions around the magnet. The numerical calculations are based on an efficient, quasistatic, finite-difference scheme and an anatomically realistic, full-body, male model. 3D field profiles from an actively-shielded 4 T magnet system are used and the body model projected through the field profile with normalized velocity. The simulation shows that it is possible to induce E-fields/currents near the level of physiological significance under some circumstances and provides insight into the spatial characteristics of the induced fields. The results are easy to extrapolate to very high field strengths for the safety evaluation at a variety of field strengths and motion velocities.