5 resultados para Mean squared error
em University of Queensland eSpace - Australia
Resumo:
In this article we investigate the asymptotic and finite-sample properties of predictors of regression models with autocorrelated errors. We prove new theorems associated with the predictive efficiency of generalized least squares (GLS) and incorrectly structured GLS predictors. We also establish the form associated with their predictive mean squared errors as well as the magnitude of these errors relative to each other and to those generated from the ordinary least squares (OLS) predictor. A large simulation study is used to evaluate the finite-sample performance of forecasts generated from models using different corrections for the serial correlation.
Resumo:
The aim of this study was to determine the most informative sampling time(s) providing a precise prediction of tacrolimus area under the concentration-time curve (AUC). Fifty-four concentration-time profiles of tacrolimus from 31 adult liver transplant recipients were analyzed. Each profile contained 5 tacrolimus whole-blood concentrations (predose and 1, 2, 4, and 6 or 8 hours postdose), measured using liquid chromatography-tandem mass spectrometry. The concentration at 6 hours was interpolated for each profile, and 54 values of AUC(0-6) were calculated using the trapezoidal rule. The best sampling times were then determined using limited sampling strategies and sensitivity analysis. Linear mixed-effects modeling was performed to estimate regression coefficients of equations incorporating each concentration-time point (C0, C1, C2, C4, interpolated C5, and interpolated C6) as a predictor of AUC(0-6). Predictive performance was evaluated by assessment of the mean error (ME) and root mean square error (RMSE). Limited sampling strategy (LSS) equations with C2, C4, and C5 provided similar results for prediction of AUC(0-6) (R-2 = 0.869, 0.844, and 0.832, respectively). These 3 time points were superior to C0 in the prediction of AUC. The ME was similar for all time points; the RMSE was smallest for C2, C4, and C5. The highest sensitivity index was determined to be 4.9 hours postdose at steady state, suggesting that this time point provides the most information about the AUC(0-12). The results from limited sampling strategies and sensitivity analysis supported the use of a single blood sample at 5 hours postdose as a predictor of both AUC(0-6) and AUC(0-12). A jackknife procedure was used to evaluate the predictive performance of the model, and this demonstrated that collecting a sample at 5 hours after dosing could be considered as the optimal sampling time for predicting AUC(0-6).
Resumo:
Background: Lean bodyweight (LBW) has been recommended for scaling drug doses. However, the current methods for predicting LBW are inconsistent at extremes of size and could be misleading with respect to interpreting weight-based regimens. Objective: The objective of the present study was to develop a semi-mechanistic model to predict fat-free mass (FFM) from subject characteristics in a population that includes extremes of size. FFM is considered to closely approximate LBW. There are several reference methods for assessing FFM, whereas there are no reference standards for LBW. Patients and methods: A total of 373 patients (168 male, 205 female) were included in the study. These data arose from two populations. Population A (index dataset) contained anthropometric characteristics, FFM estimated by dual-energy x-ray absorptiometry (DXA - a reference method) and bioelectrical impedance analysis (BIA) data. Population B (test dataset) contained the same anthropometric measures and FFM data as population A, but excluded BIA data. The patients in population A had a wide range of age (18-82 years), bodyweight (40.7-216.5kg) and BMI values (17.1-69.9 kg/m(2)). Patients in population B had BMI values of 18.7-38.4 kg/m(2). A two-stage semi-mechanistic model to predict FFM was developed from the demographics from population A. For stage 1 a model was developed to predict impedance and for stage 2 a model that incorporated predicted impedance was used to predict FFM. These two models were combined to provide an overall model to predict FFM from patient characteristics. The developed model for FFM was externally evaluated by predicting into population B. Results: The semi-mechanistic model to predict impedance incorporated sex, height and bodyweight. The developed model provides a good predictor of impedance for both males and females (r(2) = 0.78, mean error [ME] = 2.30 x 10(-3), root mean square error [RMSE] = 51.56 [approximately 10% of mean]). The final model for FFM incorporated sex, height and bodyweight. The developed model for FFM provided good predictive performance for both males and females (r(2) = 0.93, ME = -0.77, RMSE = 3.33 [approximately 6% of mean]). In addition, the model accurately predicted the FFM of subjects in population B (r(2) = 0.85, ME -0.04, RMSE = 4.39 [approximately 7% of mean]). Conclusions: A semi-mechanistic model has been developed to predict FFM (and therefore LBW) from easily accessible patient characteristics. This model has been prospectively evaluated and shown to have good predictive performance.
Resumo:
Background: The residue-wise contact order (RWCO) describes the sequence separations between the residues of interest and its contacting residues in a protein sequence. It is a new kind of one-dimensional protein structure that represents the extent of long-range contacts and is considered as a generalization of contact order. Together with secondary structure, accessible surface area, the B factor, and contact number, RWCO provides comprehensive and indispensable important information to reconstructing the protein three-dimensional structure from a set of one-dimensional structural properties. Accurately predicting RWCO values could have many important applications in protein three-dimensional structure prediction and protein folding rate prediction, and give deep insights into protein sequence-structure relationships. Results: We developed a novel approach to predict residue-wise contact order values in proteins based on support vector regression (SVR), starting from primary amino acid sequences. We explored seven different sequence encoding schemes to examine their effects on the prediction performance, including local sequence in the form of PSI-BLAST profiles, local sequence plus amino acid composition, local sequence plus molecular weight, local sequence plus secondary structure predicted by PSIPRED, local sequence plus molecular weight and amino acid composition, local sequence plus molecular weight and predicted secondary structure, and local sequence plus molecular weight, amino acid composition and predicted secondary structure. When using local sequences with multiple sequence alignments in the form of PSI-BLAST profiles, we could predict the RWCO distribution with a Pearson correlation coefficient (CC) between the predicted and observed RWCO values of 0.55, and root mean square error (RMSE) of 0.82, based on a well-defined dataset with 680 protein sequences. Moreover, by incorporating global features such as molecular weight and amino acid composition we could further improve the prediction performance with the CC to 0.57 and an RMSE of 0.79. In addition, combining the predicted secondary structure by PSIPRED was found to significantly improve the prediction performance and could yield the best prediction accuracy with a CC of 0.60 and RMSE of 0.78, which provided at least comparable performance compared with the other existing methods. Conclusion: The SVR method shows a prediction performance competitive with or at least comparable to the previously developed linear regression-based methods for predicting RWCO values. In contrast to support vector classification (SVC), SVR is very good at estimating the raw value profiles of the samples. The successful application of the SVR approach in this study reinforces the fact that support vector regression is a powerful tool in extracting the protein sequence-structure relationship and in estimating the protein structural profiles from amino acid sequences.
Resumo:
We propose a novel interpretation and usage of Neural Network (NN) in modeling physiological signals, which are allowed to be nonlinear and/or nonstationary. The method consists of training a NN for the k-step prediction of a physiological signal, and then examining the connection-weight-space (CWS) of the NN to extract information about the signal generator mechanism. We de. ne a novel feature, Normalized Vector Separation (gamma(ij)), to measure the separation of two arbitrary states i and j in the CWS and use it to track the state changes of the generating system. The performance of the method is examined via synthetic signals and clinical EEG. Synthetic data indicates that gamma(ij) can track the system down to a SNR of 3.5 dB. Clinical data obtained from three patients undergoing carotid endarterectomy of the brain showed that EEG could be modeled (within a root-means-squared-error of 0.01) by the proposed method, and the blood perfusion state of the brain could be monitored via gamma(ij), with small NNs having no more than 21 connection weight altogether.