61 resultados para Maximum-likelihood-estimation
em University of Queensland eSpace - Australia
Resumo:
Binning and truncation of data are common in data analysis and machine learning. This paper addresses the problem of fitting mixture densities to multivariate binned and truncated data. The EM approach proposed by McLachlan and Jones (Biometrics, 44: 2, 571-578, 1988) for the univariate case is generalized to multivariate measurements. The multivariate solution requires the evaluation of multidimensional integrals over each bin at each iteration of the EM procedure. Naive implementation of the procedure can lead to computationally inefficient results. To reduce the computational cost a number of straightforward numerical techniques are proposed. Results on simulated data indicate that the proposed methods can achieve significant computational gains with no loss in the accuracy of the final parameter estimates. Furthermore, experimental results suggest that with a sufficient number of bins and data points it is possible to estimate the true underlying density almost as well as if the data were not binned. The paper concludes with a brief description of an application of this approach to diagnosis of iron deficiency anemia, in the context of binned and truncated bivariate measurements of volume and hemoglobin concentration from an individual's red blood cells.
Resumo:
There has been a resurgence of interest in the mean trace length estimator of Pahl for window sampling of traces. The estimator has been dealt with by Mauldon and Zhang and Einstein in recent publications. The estimator is a very useful one in that it is non-parametric. However, despite some discussion regarding the statistical distribution of the estimator, none of the recent works or the original work by Pahl provide a rigorous basis for the determination a confidence interval for the estimator or a confidence region for the estimator and the corresponding estimator of trace spatial intensity in the sampling window. This paper shows, by consideration of a simplified version of the problem but without loss of generality, that the estimator is in fact the maximum likelihood estimator (MLE) and that it can be considered essentially unbiased. As the MLE, it possesses the least variance of all estimators and confidence intervals or regions should therefore be available through application of classical ML theory. It is shown that valid confidence intervals can in fact be determined. The results of the work and the calculations of the confidence intervals are illustrated by example. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
A generic method for the estimation of parameters for Stochastic Ordinary Differential Equations (SODEs) is introduced and developed. This algorithm, called the GePERs method, utilises a genetic optimisation algorithm to minimise a stochastic objective function based on the Kolmogorov-Smirnov statistic. Numerical simulations are utilised to form the KS statistic. Further, the examination of some of the factors that improve the precision of the estimates is conducted. This method is used to estimate parameters of diffusion equations and jump-diffusion equations. It is also applied to the problem of model selection for the Queensland electricity market. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We present a novel, maximum-likelihood (ML), lattice-decoding algorithm for noncoherent block detection of QAM signals. The computational complexity is polynomial in the block length; making it feasible for implementation compared with the exhaustive search ML detector. The algorithm works by enumerating the nearest neighbor regions for a plane defined by the received vector; in a conceptually similar manner to sphere decoding. Simulations show that the new algorithm significantly outperforms existing approaches
Resumo:
We demonstrate complete characterization of a two-qubit entangling process-a linear optics controlled-NOT gate operating with coincident detection-by quantum process tomography. We use a maximum-likelihood estimation to convert the experimental data into a physical process matrix. The process matrix allows an accurate prediction of the operation of the gate for arbitrary input states and a calculation of gate performance measures such as the average gate fidelity, average purity, and entangling capability of our gate, which are 0.90, 0.83, and 0.73, respectively.
Resumo:
The small sample performance of Granger causality tests under different model dimensions, degree of cointegration, direction of causality, and system stability are presented. Two tests based on maximum likelihood estimation of error-correction models (LR and WALD) are compared to a Wald test based on multivariate least squares estimation of a modified VAR (MWALD). In large samples all test statistics perform well in terms of size and power. For smaller samples, the LR and WALD tests perform better than the MWALD test. Overall, the LR test outperforms the other two in terms of size and power in small samples.
Resumo:
Objective: The aim of this study was to test the effectiveness of various attitude-behavior theories in explaining alcohol use among young adults. The theory of reasoned action (TRA), the theory of planned behavior and an extension of the TRA that incorporates past behavior were compared by the method of maximum-likelihood estimation, as implemented in LISREL for Windows 8.12. Method: Respondents consisted of 122 university students (82 female) who were questioned about their attitudes, subjective norms, perceived behavioral control, past behavior and intentions relating to drinking behavior. Students received course credit for their participation in the research. Results: Overall, the results suggest that the extension of the theory of reasoned action which incorporates past behavior provides the best fit to the data. For these young adults, their intentions to drink alcohol were predicted by their past behavior as well as their perceptions of what important others think they should do (subjective norm). Conclusions: The main conclusions drawn from the research concern the importance of focusing on normative influences and past behavior in explaining young adult alcohol use. Issues regarding the relative merit of various alternative models and the need for greater clarity in the measure of attitudes are also discussed.
Resumo:
The extent to which density-dependent processes regulate natural populations is the subject of an ongoing debate. We contribute evidence to this debate showing that density-dependent processes influence the population dynamics of the ectoparasite Aponomma hydrosauri (Acari: Ixodidae), a tick species that infests reptiles in Australia. The first piece of evidence comes from an unusually long-term dataset on the distribution of ticks among individual hosts. If density-dependent processes are influencing either host mortality or vital rates of the parasite population, and those distributions can be approximated with negative binomial distributions, then general host-parasite models predict that the aggregation coefficient of the parasite distribution will increase with the average intensity of infections. We fit negative binomial distributions to the frequency distributions of ticks on hosts, and find that the estimated aggregation coefficient k increases with increasing average tick density. This pattern indirectly implies that one or more vital rates of the tick population must be changing with increasing tick density, because mortality rates of the tick's main host, the sleepy lizard, Tiliqua rugosa, are unaffected by changes in tick burdens. Our second piece of evidence is a re-analysis of experimental data on the attachment success of individual ticks to lizard hosts using generalized linear modelling. The probability of successful engorgement decreases with increasing numbers of ticks attached to a host. This is direct evidence of a density-dependent process that could lead to an increase in the aggregation coefficient of tick distributions described earlier. The population-scale increase in the aggregation coefficient is indirect evidence of a density-dependent process or processes sufficiently strong to produce a population-wide pattern, and thus also likely to influence population regulation. The direct observation of a density-dependent process is evidence of at least part of the responsible mechanism.
Resumo:
This paper deals with an n-fold Weibull competing risk model. A characterisation of the WPP plot is given along with estimation of model parameters when modelling a given data set. These are illustrated through two examples. A study of the different possible shapes for the density and failure rate functions is also presented. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Inferring the spatial expansion dynamics of invading species from molecular data is notoriously difficult due to the complexity of the processes involved. For these demographic scenarios, genetic data obtained from highly variable markers may be profitably combined with specific sampling schemes and information from other sources using a Bayesian approach. The geographic range of the introduced toad Bufo marinus is still expanding in eastern and northern Australia, in each case from isolates established around 1960. A large amount of demographic and historical information is available on both expansion areas. In each area, samples were collected along a transect representing populations of different ages and genotyped at 10 microsatellite loci. Five demographic models of expansion, differing in the dispersal pattern for migrants and founders and in the number of founders, were considered. Because the demographic history is complex, we used an approximate Bayesian method, based on a rejection-regression algorithm. to formally test the relative likelihoods of the five models of expansion and to infer demographic parameters. A stepwise migration-foundation model with founder events was statistically better supported than other four models in both expansion areas. Posterior distributions supported different dynamics of expansion in the studied areas. Populations in the eastern expansion area have a lower stable effective population size and have been founded by a smaller number of individuals than those in the northern expansion area. Once demographically stabilized, populations exchange a substantial number of effective migrants per generation in both expansion areas, and such exchanges are larger in northern than in eastern Australia. The effective number of migrants appears to be considerably lower than that of founders in both expansion areas. We found our inferences to be relatively robust to various assumptions on marker. demographic, and historical features. The method presented here is the only robust, model-based method available so far, which allows inferring complex population dynamics over a short time scale. It also provides the basis for investigating the interplay between population dynamics, drift, and selection in invasive species.
Resumo:
Testing for simultaneous vicariance across comparative phylogeographic data sets is a notoriously difficult problem hindered by mutational variance, the coalescent variance, and variability across pairs of sister taxa in parameters that affect genetic divergence. We simulate vicariance to characterize the behaviour of several commonly used summary statistics across a range of divergence times, and to characterize this behaviour in comparative phylogeographic datasets having multiple taxon-pairs. We found Tajima's D to be relatively uncorrelated with other summary statistics across divergence times, and using simple hypothesis testing of simultaneous vicariance given variable population sizes, we counter-intuitively found that the variance across taxon pairs in Nei and Li's net nucleotide divergence (pi(net)), a common measure of population divergence, is often inferior to using the variance in Tajima's D across taxon pairs as a test statistic to distinguish ancient simultaneous vicariance from variable vicariance histories. The opposite and more intuitive pattern is found for testing more recent simultaneous vicariance, and overall we found that depending on the timing of vicariance, one of these two test statistics can achieve high statistical power for rejecting simultaneous vicariance, given a reasonable number of intron loci (> 5 loci, 400 bp) and a range of conditions. These results suggest that components of these two composite summary statistics should be used in future simulation-based methods which can simultaneously use a pool of summary statistics to test comparative the phylogeographic hypotheses we consider here.
Resumo:
Determining the dimensionality of G provides an important perspective on the genetic basis of a multivariate suite of traits. Since the introduction of Fisher's geometric model, the number of genetically independent traits underlying a set of functionally related phenotypic traits has been recognized as an important factor influencing the response to selection. Here, we show how the effective dimensionality of G can be established, using a method for the determination of the dimensionality of the effect space from a multivariate general linear model introduced by AMEMIYA (1985). We compare this approach with two other available methods, factor-analytic modeling and bootstrapping, using a half-sib experiment that estimated G for eight cuticular hydrocarbons of Drosophila serrata. In our example, eight pheromone traits were shown to be adequately represented by only two underlying genetic dimensions by Amemiya's approach and factor-analytic modeling of the covariance structure at the sire level. In, contrast, bootstrapping identified four dimensions with significant genetic variance. A simulation study indicated that while the performance of Amemiya's method was more sensitive to power constraints, it performed as well or better than factor-analytic modeling in correctly identifying the original genetic dimensions at moderate to high levels of heritability. The bootstrap approach consistently overestimated the number of dimensions in all cases and performed less well than Amemiya's method at subspace recovery.
Resumo:
A significant problem in the collection of responses to potentially sensitive questions, such as relating to illegal, immoral or embarrassing activities, is non-sampling error due to refusal to respond or false responses. Eichhorn & Hayre (1983) suggested the use of scrambled responses to reduce this form of bias. This paper considers a linear regression model in which the dependent variable is unobserved but for which the sum or product with a scrambling random variable of known distribution, is known. The performance of two likelihood-based estimators is investigated, namely of a Bayesian estimator achieved through a Markov chain Monte Carlo (MCMC) sampling scheme, and a classical maximum-likelihood estimator. These two estimators and an estimator suggested by Singh, Joarder & King (1996) are compared. Monte Carlo results show that the Bayesian estimator outperforms the classical estimators in almost all cases, and the relative performance of the Bayesian estimator improves as the responses become more scrambled.