2 resultados para Maximum Entropy

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The texture segmentation techniques are diversified by the existence of several approaches. In this paper, we propose fuzzy features for the segmentation of texture image. For this purpose, a membership function is constructed to represent the effect of the neighboring pixels on the current pixel in a window. Using these membership function values, we find a feature by weighted average method for the current pixel. This is repeated for all pixels in the window treating each time one pixel as the current pixel. Using these fuzzy based features, we derive three descriptors such as maximum, entropy, and energy for each window. To segment the texture image, the modified mountain clustering that is unsupervised and fuzzy c-means clustering have been used. The performance of the proposed features is compared with that of fractal features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the problem of estimating P(Yi + (...) + Y-n > x) by importance sampling when the Yi are i.i.d. and heavy-tailed. The idea is to exploit the cross-entropy method as a toot for choosing good parameters in the importance sampling distribution; in doing so, we use the asymptotic description that given P(Y-1 + (...) + Y-n > x), n - 1 of the Yi have distribution F and one the conditional distribution of Y given Y > x. We show in some specific parametric examples (Pareto and Weibull) how this leads to precise answers which, as demonstrated numerically, are close to being variance minimal within the parametric class under consideration. Related problems for M/G/l and GI/G/l queues are also discussed.