37 resultados para Maximal Aerobic Speed
em University of Queensland eSpace - Australia
Resumo:
We examined the effect of recombinant human growth hormone (rhGH) and/or recombinant human insulin-like growth factor-I (rhIGF-I) on regional fat loss in postmenopausal women undergoing a weight loss regimen of diet plus exercise. Twenty-seven women aged 59-79 years, 20-40% above ideal body weight, completed a 12-week program consisting of resistance training 2 days/week and walking 3 days/week, while consuming a diet that was 500 kcal/day less than that required for weight maintenance, Participants were randomly assigned in a double-blind fashion to receive rhGH (0.025 mg/kg BW/day: n=7), rhIGF-I (0.015 mg/kg BW/day: n=7), rhGH + rhIGF-I (n = 6), or placebo (PL: n = 7). Regional and whole body fat mass were determined by dual X-ray absorptiometry. Body fat distribution was assessed by the ratios of trunk fat-to-limb fat (TrF/LimbF) and trunk fat-to-total fat (TrF/TotF), Limb and trunk fat decreased in all groups (p < 0.01). For both ratios of fat distribution, the rhGH treated group experienced an enhanced loss of truncal compared to peripheral fat (p less than or equal to 0.01), with no significant change for those administered rhIGF-I or FL. There was no association between change in fat distribution and indices of cardiovascular disease risk as determined by serum lipid/lipoprotein levels and maximal aerobic capacity. These results suggest that administration of rhGH facilitates a decrease in central compared to peripheral fat in older women undertaking a weight loss program that combines exercise and moderate caloric restriction, although no beneficial effects are conferred to lipid/lipoprotein profiles, Further, the effect of rhGH is not enhanced by combining rhCH with rhIGF-I administration. In addition, rhIGF-I does not augment the loss of trunk fat when administered alone.
Resumo:
The purpose of the present study was to examine, in highly trained cyclists, the reproducibility of cycling time to exhaustion (T-max) at the power output equal to that attained at peak oxygen uptake ((V) over dot O(2)peak) during a progressive exercise test. Forty-three highly trained male cyclists (M +/- SD; age = 25 +/- 6yrs; weight = 75 +/- 7 kg; (V) over dot(2)peak = 64.8 +/- 5.2 ml.kg(-1) . min(-1)) performed two T-max tests one week apart. While the two measures of T-max were strongly related (r = 0.884; p < 0.001), T-max from the second test (245 +/- 57 s) was significantly higher than that of the first (237 +/- 57 s; p = 0.047; two-tailed). Within-subject variability in the present study was calculated to be 6 +/- 6%, which was lower than that previously reported for Tmax in sub-elite runners (25%). The mean T-max was significantly (p < 0.05) related to both the second ventilatory turnpoint (VT2; r = 0.38) and to (V) over dot O(2)peak (r = 0.34). Despite a relatively low within-subject coefficient of variation, these data demonstrate that the second score in a series of two T-max tests may be significantly greater than the first. Moreover the present data show that T-max in highly trained cyclists is moderately related to VT2 and (V) over dot O(2)peak.
Resumo:
The aim of this study was to compare the effects of two high-intensity, treadmill interval-training programs on 3000-m and 5000-m running performance. Maximal oxygen uptake ((V) over dot O-2max), the running speed associated with (V) over dot O-2max (nu (V) over dot O-2max), the time for which nu (V) over dot O-2max can be maintained (T-max), running economy (RE), ventilatory threshold (VT) and 3000-m and 5000-m running times were determined in 27 well-trained runners. Subjects were then randomly assigned to three groups; (1) 60% T-max (2) 70% T-max and (3) control. Subjects in the control group continued their normal training and subjects in the two T-max groups undertook a 4-week treadmill interval-training program with the intensity set at nu (V) over dot O-2max and the interval duration at the assigned T-max. These subjects completed two interval-training sessions per week (60% T-max = six intervals/session, 70% T-max group = five intervals/session). Subjects were re-tested on all parameters at the completion of the training program. There was a significant improvement between pre- and post-training values in 3000-m time trial (TT) performance in the 60% T-max group compared to the 70% T,,a, and control groups [mean (SE); 60% T-max = 17.6 (3.5) s, 70% T-max = 6.3 (4.2) s, control = 0.5 (7.7) s]. There was no significant effect of the training program on 5000-m TT performance [60% T-max = 25.8 (13.8) s, 70% T-max = 3.7 (11.6) s, control = 9.9 (13.1) s]. Although there were no significant improvements in (V) over dot O-2max, nu (V) over dot (2max) and RE between groups, changes in (V) over dot O-2max and RE were significantly correlated with the improvement in the 3000-m TT. Furthermore, VT and T-max were significantly higher in the 60% Tmax group post-compared to pre-training. In conclusion, 3000-m running performance can be significantly improved in a group of well-trained runners, using a 4-week treadmill interval training program at nu (V) over dot O-2max with interval durations of 60% T-max.
Resumo:
Increased professionalism in rugby has elicited rapid changes in the fitness profile of elite players. Recent research, focusing on the physiological and anthropometrical characteristics of rugby players, and the demands of competition are reviewed. The paucity of research on contemporary elite rugby players is highlighted, along with the need for standardised testing protocols. Recent data reinforce the pronounced differences in the anthropometric and physical characteristics of the forwards and backs. Forwards are typically heavier, taller, and have a greater proportion of body fat than backs. These characteristics are changing, with forwards developing greater total mass and higher muscularity. The forwards demonstrate superior absolute aerobic and anaerobic power, and Muscular strength. Results favour the backs when body mass is taken into account. The scaling of results to body mass can be problematic and future investigations should present results using power function ratios. Recommended tests for elite players include body mass and skinfolds, vertical jump, speed, and the multi-stage shuttle run. Repeat sprint testing is a possible avenue for more specific evaluation of players. During competition, high-intensity efforts are often followed by periods of incomplete recovery. The total work over the duration of a game is lower in the backs compared with the forwards; forwards spend greater time in physical contact with the opposition while the backs spend more time in free running, allowing them to cover greater distances. The intense efforts undertaken by rugby players place considerable stress on anaerobic energy sources, while the aerobic system provides energy during repeated efforts and for recovery. Training should focus on repeated brief high-intensity efforts with short rest intervals to condition players to the demands of the game. Training for the forwards should emphasise the higher work rates of the game, while extended rest periods can be provided to the backs. Players should not only be prepared for the demands of competition, but also the stress of travel and extreme environmental conditions. The greater professionalism of rugby union has increased scientific research in the sport; however, there is scope for significant refinement of investigations on the physiological demands of the game, and sports-specific testing procedures.
Resumo:
The linear relationship between work accomplished (W-lim) and time to exhaustion (t(lim)) can be described by the equation: W-lim = a + CP.t(lim). Critical power (CP) is the slope of this line and is thought to represent a maximum rate of ATP synthesis without exhaustion, presumably an inherent characteristic of the aerobic energy system. The present investigation determined whether the choice of predictive tests would elicit significant differences in the estimated CP. Ten female physical education students completed, in random order and on consecutive days, five art-out predictive tests at preselected constant-power outputs. Predictive tests were performed on an electrically-braked cycle ergometer and power loadings were individually chosen so as to induce fatigue within approximately 1-10 mins. CP was derived by fitting the linear W-lim-t(lim) regression and calculated three ways: 1) using the first, third and fifth W-lim-t(lim) coordinates (I-135), 2) using coordinates from the three highest power outputs (I-123; mean t(lim) = 68-193 s) and 3) using coordinates from the lowest power outputs (I-345; mean t(lim) = 193-485 s). Repeated measures ANOVA revealed that CPI123 (201.0 +/- 37.9W) > CPI135 (176.1 +/- 27.6W) > CPI345 (164.0 +/- 22.8W) (P < 0.05). When the three sets of data were used to fit the hyperbolic Power-t(lim) regression, statistically significant differences between each CP were also found (P < 0.05). The shorter the predictive trials, the greater the slope of the W-lim-t(lim) regression; possibly because of the greater influence of 'aerobic inertia' on these trials. This may explain why CP has failed to represent a maximal, sustainable work rate. The present findings suggest that if CP is to represent the highest power output that an individual can maintain for a very long time without fatigue then CP should be calculated over a range of predictive tests in which the influence of aerobic inertia is minimised.
Resumo:
This study examined the effects of 26 days of oral creatine monohydrate (Cr) supplementation on near-maximal muscular strength, high-intensity bench press performance, and body composition. Eighteen male powerlifters with at least 2 years resistance training experience took part in this 28-day experiment. Pre and postmeasurements (Days 1 and 28) were taken of near-maximal muscular strength, body mass, and % body fat. There were two periods of supplementation Days 2 to 6 and Days 7 to 27. ANOVA and t-tests revealed that Cr supplementation significantly increased body mass and lean body mass with no changes in % body fat. Significant increases in 3-RM strength occurred in both groups, both absolute and relative to body mass; the increases were greater in the Cr group. The change in total repetitions also increased significantly with Cr supplementation both in absolute terms and relative to body mass, while no significant change was seen in the placebo (P) group. Creatine supplementation caused significant changes in the number of BP reps in Sets 1, 4, and 5. No changes occurred in the P group. It appears that 26 days of Cr supplementation significantly improves muscular strength and repeated near-maximal BP performance, and induces changes in body composition.
Resumo:
Purpose: The relationship between six descriptors of lactate increase, peak (V) over dot O-2,W-peak, and 1-h cycling performance were compared in 24 trained, female cyclists (peak (V) over dot O-2 = 48.11 +/- 6.32 mL . kg(-1) . min(-1)). Methods: The six descriptors of lactate increase were: 1) lactate threshold (LT; the power output at which plasma lactate concentration begins to increase above the resting level during an incremental exercise test), 2) LT1 (the power output at which plasma lactate increases by 1 mM or more), 3) LTD (the lactate threshold calculated by the D-max method), 4) LTMOD (the lactate threshold calculated by a modified D-max method), 5) L4 (the power output at which plasma lactate reaches a concentration of 4 mmol-L-1), and 6) LTLOG (the power output at which plasma lactate concentration begins to increase when the log([La-]) is plotted against the log (power output)). Subjects first completed a peak (V) over dot O-2 test on a cycle ergometer. Finger-tip capillary blood was sampled within 30 s of the end of each 3-min stage for analysis of plasma lactate. Endurance performance was assessed 7 d later using a 1-h cycle test (OHT) in which subjects were directed to achieve the highest possible average power output. Results: The mean power output (W) for the OHT (+/- SD) was 183.01 +/- 18.88, and for each lactate variable was: LT (138.54 +/- 46.61), LT1 (179.17 +/- 27.25), LTLOG (143.97 +/- 45.74), L4 (198.09 +/- 33.84), LTD (178.79 +/- 24.07), LTMOD (212.28 +/- 31.75). Average power output during the OHT was more strongly correlated with all plasma lactate parameters (0.61 < r < 0.84) and W-peak (r = 0.81) than with peak (V) over dot O-2 (r = 0.55). The six lactate parameters were strongly correlated with each other (0.54 < r < 0.91) and of the six lactate parameters, LTD correlated best with endurance performance (r = 0.84). Conclusions: It was concluded that plasma lactate parameters and W-peak provide better indices of endurance performance than peak (V) over dot O-2 and that, of the six descriptors of lactate increase measured in this study, LTD is most strongly related to 1-h cycling performance in trained, female cyclists.
Resumo:
In this article, we prove that there exists a maximal set of m Hamilton cycles in K-n,K-n if and only if n/4 < m less than or equal to n/2. (C) 2000 John Wiley & Sons, Inc.
Resumo:
High-speed milling (HSM) has many advantages over conventional machining. Among these advantages, the lower cutting force associated with the machining process is of particular significance for Nitinol alloys because their machined surfaces show less strain hardening. In this article, a systematic study has been carried out to investigate the machining characteristics of a Ni50.6Ti49.4 alloy in HSM. The effects of cutting speed, feed rate, and depth of cut on machined surface characteristics and tool wear are studied. It is found that an increase in cutting speed has resulted in a better surface finish and less work hardening. This is attributed to the reduction of chip cross-sectional area or chip thickness, which thus leads to a lower cutting force or load.
Resumo:
The fabrication of heavy-duty printer heads involves a great deal of grinding work. Previously in the printer manufacturing industry, four grinding procedures were manually conducted in four grinding machines, respectively. The productivity of the whole grinding process was low due to the long loading time. Also, the machine floor space occupation was large because of the four separate grinding machines. The manual operation also caused inconsistent quality. This paper reports the system and process development of a highly integrated and automated high-speed grinding system for printer heads. The developed system, which is believed to be the first of its kind, not only produces printer heads of consistently good quality, but also significantly reduces the cycle time and machine floor space occupation.
Resumo:
High removal rate (up to 16.6 mm(3)/s per mm) grinding of alumina and alumina-titania was investigated with respect to material removal and basic grinding parameters using a resin-bond 160 mu m grit diamond wheel at the speeds of 40 and 160 m/s, respectively. The results show that the material removal for the single-phase polycrystalline alumina and the two-phase alumina-titania composite revealed identical mechanisms of microfracture and grain dislodgement under the grinding conditioned selected. There were no distinct differences in surface roughness and morphology for both materials ground at either conventional or high speed. An increase in material removal rate did not necessarily worsen the surface toughness for the two materials at both speeds. Also the grinding forces for the two ceramics demonstrated similar characteristics at any grinding speeds and specific removal rates. Both normal and tangential grinding forces and their force ratios at the high speed were lower than those at the conventional speed, regardless of removal rates. An increase in specific removal rate caused more rapid increases in normal and tangential forces obtained at the conventional grinding speed than those at the high speed. Furthermore, it is found that the high speed grinding at all the removal rates exerted a great amount of coolant-induced normal forces in grinding zone, which were 4-6 times higher than the pure normal grinding forces. (c) 2004 Elsevier Ltd. All rights reserved.