12 resultados para Mature osteoblast
em University of Queensland eSpace - Australia
Resumo:
Vitamin D acts through the immature osteoblast to stimulate osteoclastogenesis. Transgenic elevation of VDR in mature osteoblasts was found to inhibit osteoclastogenesis associated with an altered OPG response. This inhibition was confined to cancellous bone. This study indicates that vitamin D-mediated osteoclastogenesis is regulated locally by OPG production in the mature osteoblast.
Resumo:
A 3.9 kb DNA fragment of human osteocalcin promoter and 3.6 kb DNA fragment of the rat collagen type1a1 promoter linked with visually distinguishable GFP isomers, topaz and cyan, were used for multiplex analysis of osteoblast lineage progression. Three patterns of dual transgene, expression can be appreciated in primary bone cell cultures derived from the transgenic mice and by histology of their corresponding bones. Our data support the interpretation that strong pOBCol3.6GFPcyan alone is found in newly formed osteoblasts, while strong pOBCol3.6GFPcyan and hOC-GFPtpz are present in osteoblasts actively making a new matrix. Osteoblasts expressing strong hOC-GFPtpz and weak pOBCol3.6GF-Pcyan are also present and may or may not be producing mineralized matrix. This multiplex approach reveals the heterogeneity within the mature osteoblast population that cannot be appreciated by current histological methods. It should be useful to identify and isolate populations of cells within an osteoblast lineage as they progress through stages of differentiation.
Resumo:
Depression has been identified as a risk factor for falls, and a change in balance ability over time has yet to be investigated. This study aimed to identify if, over a 3-year period, balance ability changed in 26 women who were on medication for depression, compared to 26 non-depressed women. The two groups were matched for age, number of co-morbidities, activity level, medications, and height. All participants were simultaneously enrolled in a larger, longitudinal study of ageing. Balance measures included the Functional Reach (FR) test, Lateral Reach (LR) test, Step Test (ST), Timed Up and Go, and the Modified Clinical Test of Sensory Integration and Balance, Unilateral Stance (ULS) and Limit of Stability (LOS) laboratory tests. Results showed a significant difference between the groups on ST, right ULS (eyes closed) and forward end point excursion of the LOS. There was no difference in the number of falls between groups. Analysis of the depressed group alone showed that right FR declined significantly and left and right LR tended towards decline, but not differently between groups. There was no between-group differences for these measures. There was no significant decline in non-depressed women for any measurement. Depressed women have less ability to maintain their balance than non-depressed women, and should be encouraged to participate in appropriate activities known to improve or maintain balance.
Resumo:
Bone tissue homeostasis relies upon the ability of cells to detect and interpret extracellular signals that direct changes in tissue architecture. This study utilized a four-point bending model to create both fluid shear and strain forces (loading) during the time-dependent progression of MC3T3-E1 preosteoblasts along the osteogenic lineage. Loading was shown to increase cell number, alkaline phosphatase (ALP) activity, collagen synthesis, and the mRNA expression levels of Runx2, osteocalcin (OC), osteopontin, and cyclo-oxygenase-2. However, mineralization in these cultures was inhibited, despite an increase in calcium accumulation, suggesting that loading may inhibit mineralization in order to increase matrix deposition. Loading also increased fibroblast growth factor receptor-3 (FGFR3) expression coincident with an inhibition of FGFR1, FGFR4, FGF1, and extracellular signal-related kinase (ERK)1/2 phosphorylation. To examine whether these loading-induced changes in cell phenotype and FGFR expression could be attributed to the inhibition of ERK1/2 phosphorylation, cells were grown for 25 days in the presence of the MEK1/2 inhibitor, U0126. Significant increases in the expression of FGFR3, ALP, and OC were observed, as well as the inhibition of FGFR1, FGFR4, and FGF1. However, U0126 also increased matrix mineralization, demonstrating that inhibition of ERK1/2 phosphorylation cannot fully account for the changes observed in response to loading. in conclusion, this study demonstrates that preosteoblasts are mechanoresponsive, and that long-term loading, whilst increasing proliferation and differentiation of preosteoblasts, inhibits matrix mineralization. In addition, the increase in FGFR3 expression suggests that it may have a role in osteoblast differentiation.
Resumo:
We evaluated the effect of adjuvant whole brain irradiation (WBI) after surgery or radiosurgery for solitary brain metastases in a Phase III multicentre trial with randomization to 30-36 Gy WBI or observation. The study was closed early due to slow accrual after 19 patients (WBI 10, observation 9). There was no difference in CNS failure-free survival or overall survival between the arms. There was a trend to reduced CNS relapse with WBI (30% versus 78%, P = 0.12). Limited analysis of quality of life and neurocognitive function data revealed no evidence of difference between the arms. Our results are not inconsistent with two larger randomized trials and support the use of upfront WBI to decrease brain recurrence in this setting. (c) 2006 Elsevier Ireland Ltd. All rights reserved.