6 resultados para Matter wave statistics
em University of Queensland eSpace - Australia
Resumo:
We propose a scheme for parametric amplification and phase conjugation of an atomic Bose-Einstein condensate (BEC) via stimulated dissociation of a BEC of molecular dimers consisting of bosonic atoms. This can potentially be realized via coherent Raman transitions or using a magnetic Feshbach resonance. We show that the interaction of a small incoming atomic BEC with a (stationary) molecular BEC can produce two counterpropagating atomic beams - an amplified atomic BEC and its phase-conjugate or "time-reversed" replica. The two beams can possess strong quantum correlation in the relative particle number, with squeezed number-difference fluctuations.
Resumo:
We experimentally investigate the outcoupling of atoms from Bose-Einstein condensates using two radio-frequency (rf) fields in the presence of gravity. We show that the fringe separation in the resulting interference pattern derives entirely from the energy difference between the two rf fields and not the gravitational potential difference between the two resonances. We subsequently demonstrate how the phase and polarization of the rf radiation directly control the phase of the matter wave interference and provide a semiclassical interpretation of the results.
Resumo:
We present a theoretical analysis of three-dimensional (3D) matter-wave solitons and their stability properties in coupled atomic and molecular Bose-Einstein condensates (BECs). The soliton solutions to the mean-field equations are obtained in an approximate analytical form by means of a variational approach. We investigate soliton stability within the parameter space described by the atom-molecule conversion coupling, the atom-atom s-wave scattering, and the bare formation energy of the molecular species. In terms of ordinary optics, this is analogous to the process of sub- or second-harmonic generation in a quadratic nonlinear medium modified by a cubic nonlinearity, together with a phase mismatch term between the fields. While the possibility of formation of multidimensional spatiotemporal solitons in pure quadratic media has been theoretically demonstrated previously, here we extend this prediction to matter-wave interactions in BEC systems where higher-order nonlinear processes due to interparticle collisions are unavoidable and may not be neglected. The stability of the solitons predicted for repulsive atom-atom interactions is investigated by direct numerical simulations of the equations of motion in a full 3D lattice. Our analysis also leads to a possible technique for demonstrating the ground state of the Schrodinger-Newton and related equations that describe Bose-Einstein condensates with nonlocal interparticle forces.
Resumo:
We study the distribution of energy level spacings in two models describing coupled single-mode Bose-Einstein condensates. Both models have a fixed number of degrees of freedom, which is small compared to the number of interaction parameters, and is independent of the dimensionality of the Hilbert space. We find that the distribution follows a universal Poisson form independent of the choice of coupling parameters, which is indicative of the integrability of both models. These results complement those for integrable lattice models where the number of degrees of freedom increases with increasing dimensionality of the Hilbert space. Finally, we also show that for one model the inclusion of an additional interaction which breaks the integrability leads to a non-Poisson distribution.
Resumo:
Retention of sugarcane leaves and tops on the soil surface after harvesting has almost completely replaced pre- and post-harvest burning of crop residues in the Australian sugar industry. Since its introduction around 25 years ago, residue retention has increased soil organic matter to improve soil fertility as well as improve harvest flexibility and reduce erosion. However, in the wet tropics residue retention also poses potential problems of prolonged waterlogging, and late-season release of nitrogen which can reduce sugar content of the crop. The objective of this project is to examine the management of sugarcane residues in the wet tropics using a systems approach. Subsidiary objectives are (a) to improve understanding of nitrogen cycling in Australian sugarcane soils in the wet tropics, and (b) to identify ways to manage crop residues to retain their advantages and limit their disadvantages. Project objectives will be addressed using several approaches. Historic farm production data recorded by sugar mills in the wet tropics will be analysed to determine the effect of residue burning or retention on crop yield and sugar content. The impact of climate on soil processes will be highlighed by development of an index of nitrogen mineralisation using the Agricultural Production Systems Simulator (APSIM) model. Increased understanding of nitrogen cycling in Australian sugarcane soils and management of crop residues will be gained through a field experiment recently established in the Australian wet tropics. From this experiment the decomposition and nitrogen dynamics of residues placed on the soil surface and incorporated will be compared. The effect of differences in temperature, soil water content and pH will be further examined on these soils under glasshouse conditions. Preliminary results show a high ammonium to nitrate ratio in tropics soils, which may be due to low rates of nitrification that increase the retention of nitrogen in a form (ammonium) that is less subject to leaching. Further results will be presented at Congress.