57 resultados para Matrix-Variate Distributions

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the first in a series of three articles which aimed to derive the matrix elements of the U(2n) generators in a multishell spin-orbit basis. This is a basis appropriate to many-electron systems which have a natural partitioning of the orbital space and where also spin-dependent terms are included in the Hamiltonian. The method is based on a new spin-dependent unitary group approach to the many-electron correlation problem due to Gould and Paldus [M. D. Gould and J. Paldus, J. Chem. Phys. 92, 7394, (1990)]. In this approach, the matrix elements of the U(2n) generators in the U(n) x U(2)-adapted electronic Gelfand basis are determined by the matrix elements of a single Ll(n) adjoint tensor operator called the del-operator, denoted by Delta(j)(i) (1 less than or equal to i, j less than or equal to n). Delta or del is a polynomial of degree two in the U(n) matrix E = [E-j(i)]. The approach of Gould and Paldus is based on the transformation properties of the U(2n) generators as an adjoint tensor operator of U(n) x U(2) and application of the Wigner-Eckart theorem. Hence, to generalize this approach, we need to obtain formulas for the complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. The nonzero shift coefficients are uniquely determined and may he evaluated by the methods of Gould et al. [see the above reference]. In this article, we define zero-shift adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis which are appropriate to the many-electron problem. By definition, these are proportional to the corresponding two-shell del-operator matrix elements, and it is shown that the Racah factorization lemma applies. Formulas for these coefficients are then obtained by application of the Racah factorization lemma. The zero-shift adjoint reduced Wigner coefficients required for this procedure are evaluated first. All these coefficients are needed later for the multishell case, which leads directly to the two-shell del-operator matrix elements. Finally, we discuss an application to charge and spin densities in a two-shell molecular system. (C) 1998 John Wiley & Sons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the second in a series of articles whose ultimate goal is the evaluation of the matrix elements (MEs) of the U(2n) generators in a multishell spin-orbit basis. This extends the existing unitary group approach to spin-dependent configuration interaction (CI) and many-body perturbation theory calculations on molecules to systems where there is a natural partitioning of the electronic orbital space. As a necessary preliminary to obtaining the U(2n) generator MEs in a multishell spin-orbit basis, we must obtain a complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. The zero-shift coefficients were obtained in the first article of the series. in this article, we evaluate the nonzero shift adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. We then demonstrate that the one-shell versions of these coefficients may be obtained by taking the Gelfand-Tsetlin limit of the two-shell formulas. These coefficients,together with the zero-shift types, then enable us to write down formulas for the U(2n) generator matrix elements in a two-shell spin-orbit basis. Ultimately, the results of the series may be used to determine the many-electron density matrices for a partitioned system. (C) 1998 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the third and final article in a series directed toward the evaluation of the U(2n) generator matrix elements (MEs) in a multishell spin/orbit basis. Such a basis is required for many-electron systems possessing a partitioned orbital space and where spin-dependence is important. The approach taken is based on the transformation properties of the U(2n) generators as an adjoint tensor operator of U(n) x U(2) and application of the Wigner-Eckart theorem. A complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis (which is appropriate to the many-electron problem) were obtained in the first and second articles of this series. Ln the first article we defined zero-shift coupling coefficients. These are proportional to the corresponding two-shell del-operator matrix elements. See P. J. Burton and and M. D. Gould, J. Chem. Phys., 104, 5112 (1996), for a discussion of the del-operator and its properties. Ln the second article of the series, the nonzero shift coupling coefficients were derived. Having obtained all the necessary coefficients, we now apply the formalism developed above to obtain the U(2n) generator MEs in a multishell spin-orbit basis. The methods used are based on the work of Gould et al. (see the above reference). (C) 1998 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expokit provides a set of routines aimed at computing matrix exponentials. More precisely, it computes either a small matrix exponential in full, the action of a large sparse matrix exponential on an operand vector, or the solution of a system of linear ODEs with constant inhomogeneity. The backbone of the sparse routines consists of matrix-free Krylov subspace projection methods (Arnoldi and Lanczos processes), and that is why the toolkit is capable of coping with sparse matrices of large dimension. The software handles real and complex matrices and provides specific routines for symmetric and Hermitian matrices. The computation of matrix exponentials is a numerical issue of critical importance in the area of Markov chains and furthermore, the computed solution is subject to probabilistic constraints. In addition to addressing general matrix exponentials, a distinct attention is assigned to the computation of transient states of Markov chains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of extracting pore size distributions from characterization data is solved here with particular reference to adsorption. The technique developed is based on a finite element collocation discretization of the adsorption integral, with fitting of the isotherm data by least squares using regularization. A rapid and simple technique for ensuring non-negativity of the solutions is also developed which modifies the original solution having some negativity. The technique yields stable and converged solutions, and is implemented in a package RIDFEC. The package is demonstrated to be robust, yielding results which are less sensitive to experimental error than conventional methods, with fitting errors matching the known data error. It is shown that the choice of relative or absolute error norm in the least-squares analysis is best based on the kind of error in the data. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Krylov subspace techniques have been shown to yield robust methods for the numerical computation of large sparse matrix exponentials and especially the transient solutions of Markov Chains. The attractiveness of these methods results from the fact that they allow us to compute the action of a matrix exponential operator on an operand vector without having to compute, explicitly, the matrix exponential in isolation. In this paper we compare a Krylov-based method with some of the current approaches used for computing transient solutions of Markov chains. After a brief synthesis of the features of the methods used, wide-ranging numerical comparisons are performed on a power challenge array supercomputer on three different models. (C) 1999 Elsevier Science B.V. All rights reserved.AMS Classification: 65F99; 65L05; 65U05.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poor root development due to constraining soil conditions could be an important factor influencing health of urban trees. Therefore, there is a need for efficient techniques to analyze the spatial distribution of tree roots. An analytical procedure for describing tree rooting patterns from X-ray computed tomography (CT) data is described and illustrated. Large irregularly shaped specimens of undisturbed sandy soil were sampled from Various positions around the base of trees using field impregnation with epoxy resin, to stabilize the cohesionless soil. Cores approximately 200 mm in diameter by 500 mm in height were extracted from these specimens. These large core samples were scanned with a medical X-ray CT device, and contiguous images of soil slices (2 mm thick) were thus produced. X-ray CT images are regarded as regularly-spaced sections through the soil although they are not actual 2D sections but matrices of voxels similar to 0.5 mm x 0.5 mm x 2 mm. The images were used to generate the equivalent of horizontal root contact maps from which three-dimensional objects, assumed to be roots, were reconstructed. The resulting connected objects were used to derive indices of the spatial organization of roots, namely: root length distribution, root length density, root growth angle distribution, root spatial distribution, and branching intensity. The successive steps of the method, from sampling to generation of indices of tree root organization, are illustrated through a case study examining rooting patterns of valuable urban trees. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The integral of the Wigner function over a subregion of the phase space of a quantum system may be less than zero or greater than one. It is shown that for systems with 1 degree of freedom, the problem of determining the best possible upper and lower bounds on such an integral, over an possible states, reduces to the problem of finding the greatest and least eigenvalues of a Hermitian operator corresponding to the subregion. The problem is solved exactly in the case of an arbitrary elliptical region. These bounds provide checks on experimentally measured quasiprobability distributions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The spatial and temporal distribution of eggs laid by herbivorous insects is a crucial component of herbivore population stability, as it influences overall mortality within the population. Thus an ecologist studying populations of an endangered butterfly can do little to increase its numbers through habitat management without knowledge of its egg-laying patterns across individual host-plants under different habitat management regimes. At the other end of the spectrum, a knowledge of egg-laying behaviour can do much to control pest outbreaks by disrupting egg distributions that lead to rapid population growth. 2. The distribution of egg batches of the processionary caterpillar Ochrogaster lunifer on acacia trees was monitored in 21 habitats during 2 years in coastal Australia. The presence of egg batches on acacias was affected by host-tree 'quality' (tree size and foliar chemistry that led to increased caterpillar survival) and host-tree 'apparency' (the amount of vegetation surrounding host-trees). 3. In open homogeneous habitats, more egg batches were laid on high-quality trees, increasing potential population growth. In diverse mixed-species habitats, more egg batches were laid on low-quality highly apparent trees, reducing population growth and so reducing the potential for unstable population dynamics. The aggregation of batches on small apparent trees in diverse habitats led to outbreaks on these trees year after year, even when population levels were low, while site-wide outbreaks were rare. 4. These results predict that diverse habitats with mixed plant species should increase insect aggregation and increase population stability. In contrast, in open disturbed habitats or in regular plantations, where egg batches are more evenly distributed across high-quality hosts, populations should be more unstable, with site-wide outbreaks and extinctions being more common. 5. Mixed planting should be used on habitat regeneration sites to increase the population stability of immigrating or reintroduced insect species. Mixed planting also increases the diversity of resources, leading to higher herbivore species richness. With regard to the conservation of single species, different practices of habitat management will need to be employed depending on whether a project is concerned with methods of rapidly increasing the abundance of an endangered insect or concerned with the maintenance of a stable, established insect population that is perhaps endemic to an area. Suggestions for habitat management in these different cases are discussed. 6. Finally, intercropping can be highly effective in reducing pest outbreaks, although the economic gains of reduced pest attack may be outweighed by reduced crop yields in mixed-crop systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This note considers continuous-time Markov chains whose state space consists of an irreducible class, C, and an absorbing state which is accessible from C. The purpose is to provide results on mu-invariant and mu-subinvariant measures where absorption occurs with probability less than one. In particular, the well-known premise that the mu-invariant measure, m, for the transition rates be finite is replaced by the more natural premise that m be finite with respect to the absorption probabilities. The relationship between mu-invariant measures and quasi-stationary distributions is discussed. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We shall be concerned with the problem of determining quasi-stationary distributions for Markovian models directly from their transition rates Q. We shall present simple conditions for a mu-invariant measure m for Q to be mu-invariant for the transition function, so that if m is finite, it can be normalized to produce a quasi-stationary distribution. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, a new hybrid model for estimating the pore size distribution of micro- and mesoporous materials is developed, and tested with the adsorption data of nitrogen, oxygen, and argon on ordered mesoporous materials reported in the literature. For the micropore region, the model uses the Dubinin-Rudushkevich (DR) isotherm with the Chen-Yang modification. A recent isotherm model of the authors for nonporous materials, which uses a continuum-mechanical model for the multilayer region and the Unilan model for the submonolayer region, has been extended for adsorption in mesopores. The experimental data is inverted using regularization to obtain the pore size distribution. The present model was found to be successful in predicting the pore size distribution of pure as well as binary physical mixtures of MCM-41 synthesized with different templates, with results in agreement with those from the XRD method and nonlocal density functional theory. It was found that various other recent methods, as well as the classical Broekhoff and de Beer method, underpredict the pore diameter of MCM-41. The present model has been successfully applied to MCM-48, SBA's, CMK, KIT, HMS, FSM, MTS, mesoporous fly ash, and a large number of other regular mesoporous materials.