7 resultados para Matrix models

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has long been recognized that demographic structure within a population can significantly affect the likely outcomes of harvest. Many studies have focussed on equilibrium dynamics and maximization of the value of the harvest taken. However, in some cases the management objective is to maintain the population at a abundance that is significantly below the carrying capacity. Achieving such an objective by harvest can be complicated by the presence of significant structure (age or stage) in the target population. in such cases, optimal harvest strategies must account for differences among age- or stage-classes of individuals in their relative contribution to the demography of the population. In addition, structured populations are also characterized by transient non-linear dynamics following perturbation, such that even under an equilibrium harvest, the population may exhibit significant momentum, increasing or decreasing before cessation of growth. Using simple linear time-invariant models, we show that if harvest levels are set dynamically (e.g., annually) then transient effects can be as or more important than equilibrium outcomes. We show that appropriate harvest rates can be complicated by uncertainty about the demographic structure of the population, or limited control over the structure of the harvest taken. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Traditional sensitivity and elasticity analyses of matrix population models have been used to p inform management decisions, but they ignore the economic costs of manipulating vital rates. For exam le, the growth rate of a population is often most sensitive to changes in adult survival rate, but this does not mean that increasing that rate is the best option for managing the population because it may be much more expensive than other options. To explore how managers should optimize their manipulation of vital rates, we incorporated the cost of changing those rates into matrix population models. We derived analytic expressions for locations in parameter space where managers should shift between management of fecundity and survival, for the balance between fecundity and survival management at those boundaries, and for the allocation of management resources to sustain that optimal balance. For simple matrices, the optimal budget allocation can often be expressed as simple functions of vital rates and the relative costs of changing them. We applied our method to management of the Helmeted Honeyeater (Lichenostomus melanops cassidix; an endangered Australian bird) and the koala (Phascolarctos cinereus) as examples. Our method showed that cost-efficient management of the Helmeted Honeyeater should focus on increasing fecundity via nest protection, whereas optimal koala management should focus on manipulating both fecundity and survival simultaneously, These findings are contrary to the cost-negligent recommendations of elasticity analysis, which would suggest focusing on managing survival in both cases. A further investigation of Helmeted Honeyeater management options, based on an individual-based model incorporating density dependence, spatial structure, and environmental stochasticity, confirmed that fecundity management was the most cost-effective strategy. Our results demonstrate that decisions that ignore economic factors will reduce management efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we investigate the asymptotic and finite-sample properties of predictors of regression models with autocorrelated errors. We prove new theorems associated with the predictive efficiency of generalized least squares (GLS) and incorrectly structured GLS predictors. We also establish the form associated with their predictive mean squared errors as well as the magnitude of these errors relative to each other and to those generated from the ordinary least squares (OLS) predictor. A large simulation study is used to evaluate the finite-sample performance of forecasts generated from models using different corrections for the serial correlation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The central elements of the algebra of monodromy matrices associated with the Z(n) R-matrix are studied. When the crossing parameter w takes a special rational value w = n/N, where N and n are positive coprime integers, the center is substantially larger than that in the generic case for which the quantum determinant provides the center. In the trigonometric limit, the situation corresponds to the quantum group at roots of unity. This is a higher rank generalization of the recent results by Belavin and Jimbo. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subsequent to the influential paper of [Chan, K.C., Karolyi, G.A., Longstaff, F.A., Sanders, A.B., 1992. An empirical comparison of alternative models of the short-term interest rate. Journal of Finance 47, 1209-1227], the generalised method of moments (GMM) has been a popular technique for estimation and inference relating to continuous-time models of the short-term interest rate. GMM has been widely employed to estimate model parameters and to assess the goodness-of-fit of competing short-rate specifications. The current paper conducts a series of simulation experiments to document the bias and precision of GMM estimates of short-rate parameters, as well as the size and power of [Hansen, L.P., 1982. Large sample properties of generalised method of moments estimators. Econometrica 50, 1029-1054], J-test of over-identifying restrictions. While the J-test appears to have appropriate size and good power in sample sizes commonly encountered in the short-rate literature, GMM estimates of the speed of mean reversion are shown to be severely biased. Consequently, it is dangerous to draw strong conclusions about the strength of mean reversion using GMM. In contrast, the parameter capturing the levels effect, which is important in differentiating between competing short-rate specifications, is estimated with little bias. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Determining the dimensionality of G provides an important perspective on the genetic basis of a multivariate suite of traits. Since the introduction of Fisher's geometric model, the number of genetically independent traits underlying a set of functionally related phenotypic traits has been recognized as an important factor influencing the response to selection. Here, we show how the effective dimensionality of G can be established, using a method for the determination of the dimensionality of the effect space from a multivariate general linear model introduced by AMEMIYA (1985). We compare this approach with two other available methods, factor-analytic modeling and bootstrapping, using a half-sib experiment that estimated G for eight cuticular hydrocarbons of Drosophila serrata. In our example, eight pheromone traits were shown to be adequately represented by only two underlying genetic dimensions by Amemiya's approach and factor-analytic modeling of the covariance structure at the sire level. In, contrast, bootstrapping identified four dimensions with significant genetic variance. A simulation study indicated that while the performance of Amemiya's method was more sensitive to power constraints, it performed as well or better than factor-analytic modeling in correctly identifying the original genetic dimensions at moderate to high levels of heritability. The bootstrap approach consistently overestimated the number of dimensions in all cases and performed less well than Amemiya's method at subspace recovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular fragments of cartilage are antigenic and can stimulate an autoimmune response. Oral administration of type II collagen prevents disease onset in animal models of arthritis but the effects of other matrix components have not been reported. We evaluated glycosaminoglycan polypeptides (GAG-P) and matrix proteins (CaP) from cartilage for a) mitigating disease activity in rats with collagen-induced arthritis (CIA) and adjuvant-induced arthritis (AIA) and b) stimulating proteoglycan (PG) synthesis by chondrocytes in-vitro. CIA and AIA were established in Wistar rats using standard methods. Agents were administered orally (10–200 mg/kg), either for seven days prior to disease induction (toleragenic protocol), or continuously for 15 days after injecting the arthritigen (prophylactic protocol). Joint swelling and arthritis scores were determined on day 15. Histological sections of joint tissues were assessed post-necropsy. In chondrocyte cultures, CaP + / − interleukin-1 stimulated PG biosynthesis. CaP was also active in preventing arthritis onset at 3.3, 10 or 20 mg/kg in the rat CIA model using the toleragenic protocol. It was only active at 20 and 200 mg/kg in the CIA prophylactic protocol. GAG-P was active in the CIA toleragenic protocol at 20 mg/kg but chondroitin sulfate and glucosamine hydrochloride or glucosamine sulfate were all inactive. The efficacy of CaP in the rat AIA model was less than in the CIA model. These findings lead us to suggest that oral CaP could be used as a disease-modifying anti-arthritic drug.