3 resultados para Matrix degrading enzymes

em University of Queensland eSpace - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Individual and combined supplementation of phosphorus-adequate, wheat-based broiler diets with exogenous phytase and xylanase was evaluated in three experiments. The effects of the enzyme combination in lysine-deficient diets containing wheat and sorghum were more pronounced than those of the individual feed enzymes. The inclusion of phytase plus xylanase improved (p<0.05) weight gains (7.3%) and feed efficiency (7.0%) of broilers (7-28 days post-hatch) and apparent metabolisable energy (AME) by 0.76 MJ/kg DM. Phytase plus xylanase increased (p<0.05) the overall, apparent ileal digestibility of amino acids by 4.5% (0.781 to 0.816); this was greater than the responses to either phytase (3.6%; 0.781 to 0.809) or xylanase (0.7%; 0.781 to 0.784). Absolute increases in amino acid digestibility with the combination exceeded the sum of the individual increases generated by phytase and xylanase for alanine, aspartic acid, glutamic acid, glycine, histidine, isoleucine, phenylalanine, threonine, tyrosine and valine. These synergistic responses may have resulted from phytase and xylanase having complementary modes of action for enhancing amino acid digestibilities and/or facilitating substrate access. The two remaining experiments were almost identical except wheat used in Experiment 2 had a higher phytate concentration and a lower estimated AME content than wheat used in Experiment 3. Individually, phytase and xylanase were generally more effective in Experiment 2, which probably reflects the higher dietary substrate levels present. Phytase plus xylanase increased (p<0.05) gains (15.4%) and feed efficiency (7.0%) of broiler chicks from 4-24 days post-hatch in Experiment 2; whereas, in Experiment 3, the combination increased (p<0.05) growth to a lesser extent (5.6%) and had no effect on feed efficiency. This difference in performance responses appeared to be 'protein driven' as the combination increased (p<0.05) nitrogen retention in Experiment 2 but not in Experiment 3; whereas phytase plus xylanase significantly increased AME in both experiments. In Experiments 2 and 3 the combined inclusion levels of phytase and xylanase were lower that the individual additions, which demonstrates the benefits of simultaneously including phytase and xylanase in wheat-based poultry diets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A finite difference method for simulating voltammograms of electrochemically driven enzyme catalysis is presented. The method enables any enzyme mechanism to be simulated. The finite difference equations can be represented as a matrix equation containing a nonlinear sparse matrix. This equation has been solved using the software package Mathematica. Our focus is on the use of cyclic voltammetry since this is the most commonly employed electrochemical method used to elucidate mechanisms. The use of cyclic voltammetry to obtain data from systems obeying Michaelis-Menten kinetics is discussed, and we then verify our observations on the Michaelis-Menten system using the finite difference simulation. Finally, we demonstrate how the method can be used to obtain mechanistic information on a real redox enzyme system, the complex bacterial molybdoenzyme xanthine dehydrogenase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Statins are known to enhance atherosclerotic plaque stability through influences on extracellular matrix homeostasis. Net matrix production reflects the relative balance of matrix production and degradation through enzymes such as matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitor of MMP (TIMPs). The effects of statins on endothelial cell production of these parameters following co-exposure with a proatherogenic stimulus such as high glucose are not known. Methods Human endothelial cells were exposed for 72 h to 5 mM> (control) or 25 mM (high) glucose +/- atorvastatin (1 mumol/l). Extracellular matrix homeostasis was assessed by measuring matrix metalloproteinase (MMP)-2 secretion, tissue inhibitor of MMP (TIMP)-1 and -2 secretion and net collagen IV production. Results were expressed as percentage +/- SEM of control values. Results Exposure to high glucose increased cellular collagen IV expression to 190.1 +/- 11.7% (P < 0.0001) of control levels. No change in MMP-2 secretion (111.6 +/- 5.2%; P > 0.05) was observed but both TIMP-1 and TIMP-2 expression were increased to 136.3 +/- 6.4% and 144.0 +/- 27.5%, respectively (both P < 0.05). The presence of atorvastatin in high glucose conditions reduced collagen IV expression to 136.1 +/- 20.6%. This was paralleled by increased secretion of MMP-2 to 145.8 +/- 7.8% (P < 0.01), increased TIMP-2 expression to 208.0 +/- 21.3% (P < 0.005 compared with high glucose) but no change in TIMP-1 expression (155.1 +/- 14.6%) compared with high glucose alone. The presence of atorvastatin in control conditions did not affect levels of collagen IV expression (114.5 +/- 13.2%). Conclusions Endothelial cell exposure to high glucose was associated with a MMP/TIMP profile that increased extracellular matrix production which was attenuated by concurrent exposure to atorvastatin. Consequently, a mechanism by which the atherosclerotic plaque regression that is observed in patients taking these drugs has been demonstrated.