44 resultados para Mating Preferences
em University of Queensland eSpace - Australia
Resumo:
Mating preferences are common in natural populations, and their divergence among populations is considered an important source of reproductive isolation during speciation. Although mechanisms for the divergence of mating preferences have received substantial theoretical treatment, complementary experimental tests are lacking. We conducted a laboratory evolution experiment, using the fruit fly Drosophila serrata, to explore the role of divergent selection between environments in the evolution of female mating preferences. Replicate populations of D. serrata were derived from a common ancestor and propagated in one of three resource environments: two novel environments and the ancestral laboratory environment. Adaptation to both novel environments involved changes in cuticular hydrocarbons, traits that predict mating success in these populations. Furthermore, female mating preferences for these cuticular hydrocarbons also diverged among populations. A component of this divergence occurred among treatment environments, accounting for at least 17.4% of the among- population divergence in linear mating preferences and 17.2% of the among-population divergence in nonlinear mating preferences. The divergence of mating preferences in correlation with environment is consistent with the classic by- product model of speciation in which premating isolation evolves as a side effect of divergent selection adapting populations to their different environments.
Resumo:
Recent studies have demonstrated male mate choice for female ornaments in species without sex-role reversal. Despite these empirical findings, little is known about the adaptive dynamics of female signalling, in particular the evolution of male mating preferences. The evolution of traits that signal mate quality is more complex in females than in males because females usually provide the bulk of resources for the developing offspring. Here, we investigate the evolution of male mating preferences using a mathematical model which: (i) specifically accounts for the fact that females must trade-off resources invested in ornaments with reproduction; and (ii) allows male mating preferences to evolve a non-directional shape. The optimal adaptive strategy for males is to develop stabilizing mating preferences for female display traits to avoid females that either invests too many or too few resources in ornamentation. However, the evolutionary stability of this prediction is dependent upon the level of error made by females when allocating resources to either signal or fecundity.
Resumo:
Stabilizing selection has been predicted to change genetic variances and covariances so that the orientation of the genetic variance-covariance matrix (G) becomes aligned with the orientation of the fitness surface, but it is less clear how directional selection may change G. Here we develop statistical approaches to the comparison of G with vectors of linear and nonlinear selection. We apply these approaches to a set of male sexually selected cuticular hydrocarbons (CHCs) of Drosophila serrata. Even though male CHCs displayed substantial additive genetic variance, more than 99% of the genetic variance was orientated 74.9degrees away from the vector of linear sexual selection, suggesting that open-ended female preferences may greatly reduce genetic variation in male display traits. Although the orientation of G and the fitness surface were found to differ significantly, the similarity present in eigenstructure was a consequence of traits under weak linear selection and strong nonlinear ( convex) selection. Associating the eigenstructure of G with vectors of linear and nonlinear selection may provide a way of determining what long-term changes in G may be generated by the processes of natural and sexual selection.
Resumo:
The nature of male mating preferences, and how they differ from female mating preferences in species with conventional sex roles, has received little attention in sexual selection studies. We estimated the form and strength of sexual selection as a consequence of male and female mating preferences in a laboratory-based population of Drosophila serrata. The differences between sexual selection on male and female signal traits (cuticular hydrocarbons [CHCs]) were evaluated within a formal framework of linear and nonlinear selection gradients. Females tended to exert linear sexual selection on male CHCs, whereas males preferred intermediate female CHC phenotypes leading to convex (stabilizing) selection gradients. Possible mechanisms determining the nonlinear nature of sexual selection on female CHCs are proposed.
Resumo:
Stabilizing selection is a fundamental concept in evolutionary biology. In the presence of a single intermediate optimum phenotype (fitness peak) on the fitness surface, stabilizing selection should cause the population to evolve toward such a peak. This prediction has seldom been tested, particularly for suites of correlated traits. The lack of tests for an evolutionary match between population means and adaptive peaks may be due, at least in part, to problems associated with empirically detecting multivariate stabilizing selection and with testing whether population means are at the peak of multivariate fitness surfaces. Here we show how canonical analysis of the fitness surface, combined with the estimation of confidence regions for stationary points on quadratic response surfaces, may be used to define multivariate stabilizing selection on a suite of traits and to establish whether natural populations reside on the multivariate peak. We manufactured artificial advertisement calls of the male cricket Teleogryllus commodus and played them back to females in laboratory phonotaxis trials to estimate the linear and nonlinear sexual selection that female phonotactic choice imposes on male call structure. Significant nonlinear selection on the major axes of the fitness surface was convex in nature and displayed an intermediate optimum, indicating multivariate stabilizing selection. The mean phenotypes of four independent samples of males, from the same population as the females used in phonotaxis trials, were within the 95% confidence region for the fitness peak. These experiments indicate that stabilizing sexual selection may play an important role in the evolution of male call properties in natural populations of T. commodus.
Resumo:
The genetic analysis of mate choice is fraught with difficulties. Males produce complex signals and displays that can consist of a combination of acoustic, visual, chemical and behavioural phenotypes. Furthermore, female preferences for these male traits are notoriously difficult to quantify. During mate choice, genes not only affect the phenotypes of the individual they are in, but can influence the expression of traits in other individuals. How can genetic analyses be conducted to encompass this complexity? Tighter integration of classical quantitative genetic approaches with modern genomic technologies promises to advance our understanding of the complex genetic basis of mate choice.
Resumo:
The net effect of sexual selection on nonsexual fitness is controversial. On one side, elaborate display traits and preferences for them can be costly, reducing the nonsexual fitness of individuals possessing them, as well as their offspring, In contrast, sexual selection may reinforce nonsexual fitness if an individual's attractiveness and quality are genetically correlated. According to recent models, such good-genes mate choice should increase both the extent and rate of adaptation. We evolved 12 replicate populations of Drosophila serrata in a powerful two-way factorial experimental design to test the separate and combined contributions of natural and sexual selection to adaptation to a novel larval food resource. Populations evolving in the presence of natural selection had significantly higher mean nonsexual fitness when measured over three generations (13-15) during the course of experimental evolution (16-23% increase). The effect of natural selection was even more substantial when measured in a standardized, monogamous mating environment at the end of the experiment (generation 16; 52% increase). In contrast, and despite strong sexual selection on display traits, there was no evidence from any of the four replicate fitness measures that sexual selection promoted adaptation. In addition, a comparison of fitness measures conducted under different mating environments demonstrated a significant direct cost of sexual selection to females, likely arising from some form of male-induced harm. Indirect benefits of sexual selection in promoting adaptation to this novel resource environment therefore appear to be absent in this species, despite prior evidence suggesting the operation of good-genes mate choice in their ancestral environment. How novel environments affect the operation of good-genes mate choice is a fundamental question for future sexual selection research.
Resumo:
In socially monogamous birds, females may express mate preferences when they first select a breeding partner, through divorce and subsequent breeding dispersal to a new partner and through extrapair mating. We examined settlement patterns, divorce and breeding dispersal in a sedentary Australian passerine, the brown thornbill (Acanthiza pusilla), in relation to two traits known to influence extrapair paternity (male age and male size). Settlement decisions, divorce and territory switching behaviour were all female strategies that reduced their likelihood of breeding with 1-year-old males. Females preferred to settle in territories with 2+ -year-old males, were more likely to divorce 1-year-old males, and only switched territories if they had an opportunity to form a new pair bond with an old male. In contrast, female settlement and divorce decisions were not influenced by male size. Female thornbills obtain a direct benefit from preferring older males as social mates because breeding success improves with male age in brown thornbills. Nevertheless, divorce rates in this species were low (14% of pair bonds were terminated by divorce), and individuals rarely switched territories following the death of a mate. Both of these mating strategies appeared to be primarily constrained by the distance adults moved to initiate a new pair bond (1-2 territories) and by the limited availability of unpaired older males in the immediate neighbourhood.
By the Decade: An Exploration of the Leisure Perceptions and Preferences of Mid-Life Married Couples
Resumo:
Cleaner fish, Labroides dimidiatus, prefer the mucus of the parrotfish, Chlorurus sordidus, to parasitic gnathiid isopods, the main items in their diet, indicating a major conflict between clients and cleaners over what the latter should eat during interactions. We tested whether the conflict varied with client species (and the quality of its mucus) and with the presence of blood in the gnathfids. First, we offered cleaners the choice between mucus of the parrotfish and that of the snapper, Lutjanus fulviflamma. When offered equal amounts of mucus on Plexiglas plates, cleaners readily developed a significant preference for the parrotfish mucus. Reducing the amount of parrotfish mucus by 75% made the preference disappear. In a second test, we offered the cleaners gnathiids that were or were not engorged with client fish blood. Cleaners showed no significant preference for either food item. Our results suggest that the degree of conflict between cleaners and clients may vary between species, depending on whether the latter have a preferred mucus. In contrast, the cleaners' lack of preference for engorged gnathiids benefits clients because it means that cleaners do not hesitate to eat unengorged gnathiids before the gnathiids harm the fish by removing blood or by transmitting blood parasites. (C) 2004 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Learning processes are widely held to be the mechanism by which boundedly rational agents adapt to environmental changes. We argue that this same outcome might also be achieved by a different mechanism, namely specialisation and the division of knowledge, which we here extend to the consumer side of the economy. We distinguish between high-level preferences and low-level preferences as nested systems of rules used to solve particular choice problems. We argue that agents, while sovereign in high-level preferences, may often find it expedient to acquire, in a pseudo-market, the low-level preferences in order to make good choices when purchasing complex commodities about which they have little or no experience. A market for preferences arises when environmental complexity overwhelms learning possibilities and leads agents to make use of other people's specialised knowledge and decision rules.
Resumo:
The paper identifies the structural restrictions on preferences required for them to exhibit both translation homotheticity in particular direction and radial homotheticity. The results are illustrated by an application to an asset allocation problem in the absence of riskless asset.
Resumo:
Research with adults has shown a preference for average-weight female figures with waist-to-hip ratios (WHR) of 0.7, and average weight male figures with waist-to-hip ratios of 0.9. This study investigated the development of preferences for WHR sizes as well as preferences for specific body weights. Five-hundred eleven children ranging in age from 6 to 17 were presented with drawings of 12 male and 12 female silhouettes varying in weight and WHR and asked to select one they thought looked the nicest or most attractive. The youngest children showed preferences for the underweight figures, changing to consistent preferences for the average weight figures in the teenage years. The developmental curves for waist-to-hip ratio preferences were linear, changing gradually over time to become more adult-like. Potential developmental models for the development of preferences for specific body shapes are considered in relation to these data.
Resumo:
Translocation is an important tool for the conservation of species that have suffered severe range reductions. The success of a translocation should be measured not only by the survival of released animals, but by the reproductive output of individuals and hence the establishment of a self-sustaining population. The bridled nailtail wallaby is an endangered Australian macropod that suffered an extensive range contraction to a single remaining wild population. A translocated population was established and subsequently monitored over a four year period. The aim of this study was to measure the reproductive success of released males using genetic tools and to determine the factors that predicted reproductive success. Captive-bred and wild-caught animals were released and we found significant variation in male reproductive success among release groups. Variation in reproductive success was best explained by individual male weight, survival and release location rather than origin. Only 26% of candidate males were observed to sire an offspring during the study. The bridled nailtail wallaby is a sexually dimorphic, polygynous macropod and reproductive success is skewed toward large males. Males over 5800 g were six times more likely to sire an offspring than males below this weight. This study highlights the importance of considering mating system when choosing animals for translocation. Translocation programs for polygynous species should release a greater proportion of females, and only release males of high breeding potential. By maximizing the reproductive output of released animals, conservation managers will reduce the costs of translocation and increase the chance of successfully establishing a self-sustaining population. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Genetic variation at microsatellite markers was used to quantify genetic structure and mating behavior in a severely fragmented population of the wind-pollinated, wind-dispersed temperate tree Fraxinus excelsior in a deforested catchment in Scotland. Remnants maintain high levels of genetic diversity, comparable with those reported for continuous populations in southeastern Europe, and show low interpopulation differentiation (Theta = 0.080), indicating that historical gene exchange has not been limited (Nm = 3.48). We estimated from seeds collected from all trees producing fruits in three of five remnants that F. excelsior is predominantly outcrossing (t(m). = 0.971 +/- 0.028). Use of a neighborhood model approach to describe the relative contribution of local and long-distance pollen dispersal indicates that pollen gene flow into each of the three remnants is extensive (46-95%) and pollen dispersal has two components. The first is very localized and restricted to tens of meters around the mother trees. The second is a long-distance component with dispersal occurring over several kilometers. Effective dispersal distances, accounting for the distance and directionality to mother trees of sampled pollen donors, average 328 m and are greater than values reported for a continuous population. These results suggest that the opening of the landscape facilitates airborne pollen movement and may alleviate the expected detrimental genetic effects of fragmentation.