124 resultados para Mating Dispersal

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecological genetic studies have demonstrated that spatial patterns of mating dispersal, the dispersal of gametes through mating behaviour, can facilitate inbreeding avoidance and strongly influence the structure of populations, particularly in highly philopatric species. Elements of breeding group dynamics, such as strong structuring and sex-biased dispersal among groups, can also minimize inbreeding and positively influence levels of genetic diversity within populations. Rock-wallabies are highly philopatric mid-sized mammals whose strong dependence on rocky terrain has resulted in series of discreet, small colonies in the landscape. Populations show no signs of inbreeding and maintain high levels of genetic diversity despite strong patterns of limited gene flow within and among colonies. We used this species to investigate the importance of mating dispersal and breeding group structure to inbreeding avoidance within a 'small' population. We examined the spatial patterns of mating dispersal, the extent of kinship within breeding groups, and the degree of relatedness among brush-tailed rock-wallaby breeding pairs within a colony in southeast Queensland. Parentage data revealed remarkably restricted mating dispersal and strong breeding group structuring for a mid-sized mammal. Breeding groups showed significant levels of female kinship with evidence of male dispersal among groups. We found no evidence for inbreeding avoidance through mate choice; however, anecdotal data suggest the importance of life history traits to inbreeding avoidance between first-degree relatives. We suggest that the restricted pattern of mating dispersal and strong breeding group structuring facilitates inbreeding avoidance within colonies. These results provide insight into the population structure and maintenance of genetic diversity within colonies of the threatened brush-tailed rock-wallaby.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Koala dispersal was investigated as part of a detailed ecological study of a nationally significant koala population located 20 km south-east of Brisbane, Queensland. From 1996 to 2000, 195 koalas from three sites were captured and fitted with radio-collars. A total of 40 koalas ( 23 males and 17 females) dispersed from these sites. Most (93%) dispersing individuals were 20 - 36 months of age. Three adult females ( more than 36 months old) dispersed and no adult males dispersed during the study. A significantly higher proportion of young males dispersed than females. Dispersal occurred between June and December, with most dispersal of males commencing in July and August and that of females commencing between September and November prior to, and early in, the annual breeding season. The mean straight-line distance between the natal and breeding home ranges for males and females was similar and was measured at 3.5 km ( range 1.1 - 9.7 km) and 3.4 km ( range 0.3 - 10.6 km) respectively. Dispersing males and females tended to successfully disperse south and west of their natal home ranges and were generally unable to successfully disperse to urban areas within the study area, as a high proportion of the mortality of dispersing koalas was associated with attacks by domestic dogs and with collisions with vehicles on roads. Information from other studies indicates that most young koalas disperse from their natal areas. It is likely that the social behaviour and mating systems of koala populations provide mechanisms for young koalas to disperse. The potential role of dispersal in the dynamics of regional koala populations is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Between 1988 and 2001, we studied social relationships in the superb fairy-wren Malurus cyaneus (Latham), a cooperative breeder with male helpers in which extra-group fertilizations are more common than within-pair fertilizations. 2. Unlike other fairy-wren species, females never bred on their natal territory. First-year females dispersed either directly from their natal territory to a breeding vacancy or to a foreign 'staging-post' territory where they spent their first winter as a subordinate. Females dispersing to a foreign territory settled in larger groups. Females on foreign territories inherited the territory if the dominant female died, and were sometimes able to split the territory into two by pairing with a helper male. However, most dispersed again to obtain a vacancy. 3. Females dispersing from a staging post usually gained a neighbouring vacancy, but females gaining a vacancy directly from their natal territory travelled further, perhaps to avoid pairing or mating with related males. 4. Females frequently divorced their partner, although the majority of relationships were terminated by the death of one of the pair. If death did not intervene, one-third of pairings were terminated by female-initiated divorce within 1000 days. 5. Three divorce syndromes were recognized. First, females that failed to obtain a preferred territory moved to territories with more helpers. Secondly, females that became paired to their sons when their partner died usually divorced away from them. Thirdly, females that have been in a long relationship divorce once a son has gained the senior helper position. 6. Dispersal to avoid pairing with sons is consistent with incest avoidance. However, there may be two additional benefits. Mothers do not mate with their sons, so dispersal by the mother liberates her sons to compete for within-group matings. Further, divorcing once their son has become a breeder or a senior helper allows the female to start sons in a queue for dominance on another territory. Females that do not take this option face constraints on their ability to recruit more sons into the local neighbourhood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In socially monogamous birds, females may express mate preferences when they first select a breeding partner, through divorce and subsequent breeding dispersal to a new partner and through extrapair mating. We examined settlement patterns, divorce and breeding dispersal in a sedentary Australian passerine, the brown thornbill (Acanthiza pusilla), in relation to two traits known to influence extrapair paternity (male age and male size). Settlement decisions, divorce and territory switching behaviour were all female strategies that reduced their likelihood of breeding with 1-year-old males. Females preferred to settle in territories with 2+ -year-old males, were more likely to divorce 1-year-old males, and only switched territories if they had an opportunity to form a new pair bond with an old male. In contrast, female settlement and divorce decisions were not influenced by male size. Female thornbills obtain a direct benefit from preferring older males as social mates because breeding success improves with male age in brown thornbills. Nevertheless, divorce rates in this species were low (14% of pair bonds were terminated by divorce), and individuals rarely switched territories following the death of a mate. Both of these mating strategies appeared to be primarily constrained by the distance adults moved to initiate a new pair bond (1-2 territories) and by the limited availability of unpaired older males in the immediate neighbourhood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic variation at microsatellite markers was used to quantify genetic structure and mating behavior in a severely fragmented population of the wind-pollinated, wind-dispersed temperate tree Fraxinus excelsior in a deforested catchment in Scotland. Remnants maintain high levels of genetic diversity, comparable with those reported for continuous populations in southeastern Europe, and show low interpopulation differentiation (Theta = 0.080), indicating that historical gene exchange has not been limited (Nm = 3.48). We estimated from seeds collected from all trees producing fruits in three of five remnants that F. excelsior is predominantly outcrossing (t(m). = 0.971 +/- 0.028). Use of a neighborhood model approach to describe the relative contribution of local and long-distance pollen dispersal indicates that pollen gene flow into each of the three remnants is extensive (46-95%) and pollen dispersal has two components. The first is very localized and restricted to tens of meters around the mother trees. The second is a long-distance component with dispersal occurring over several kilometers. Effective dispersal distances, accounting for the distance and directionality to mother trees of sampled pollen donors, average 328 m and are greater than values reported for a continuous population. These results suggest that the opening of the landscape facilitates airborne pollen movement and may alleviate the expected detrimental genetic effects of fragmentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytoplasmic incompatibility is known to occur between strains of both Drosophila simulans and D. melanogaster. Incompatibility is associated with the infection of Drosophila with microorganismal endosymbionts. This paper reports survey work conducted on strains of D. simulans and D. melanogaster from diverse geographical locations finding that infected populations are relatively rare and scattered in their distribution. The distribution of infected populations of D. simulans appears to be at odds with deterministic models predicting the rapid spread of the infection through uninfected populations. Examination of isofemale lines from four localities in California where populations appear to be polymorphic for the infection failed to find evidence for consistent assortative mating preferences between infected and uninfected populations that may explain the basis for the observed polymorphism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patterns of population subdivision and the relationship between gene flow and geographical distance in the tropical estuarine fish Lares calcarifer (Centropomidae) were investigated using mtDNA control region sequences. Sixty-three putative haplotypes were resolved from a total of 270 individuals from nine localities within three geographical regions spanning the north Australian coastline. Despite a continuous estuarine distribution throughout the sampled range, no haplotypes were shared among regions. However, within regions, common haplotypes were often shared among localities. Both sequence-based (average Phi(ST)=0.328) and haplotype-based (average Phi(ST)=0.182) population subdivision analyses indicated strong geographical structuring. Depending on the method of calculation, geographical distance explained either 79 per cent (sequence-based) or 23 per cent (haplotype-based) of the variation in mitochondrial gene flow. Such relationships suggest that genetic differentiation of L. calcarifer has been generated via isolation-by-distance, possibly in a stepping-stone fashion. This pattern of genetic structure is concordant with expectations based on the life history of L. calcarifer and direct studies of its dispersal patterns. Mitochondrial DNA variation, although generally in agreement with patterns of allozyme variation, detected population subdivision at smaller spatial scales. Our analysis of mtDNA variation in L. calcarifer confirms that population genetic models can detect population structure of not only evolutionary significance but also of demographic significance. Further, it demonstrates the power of inferring such structure from hypervariable markers, which correspond to small effective population sizes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use a spatially explicit population model to explore the population consequences of different habitat selection mechanisms on landscapes with fractal variation in habitat quality. We consider dispersal strategies ranging from random walks to perfect habitat selectors for two species of arboreal marsupial, the greater glider (Petauroides volans) and the mountain brushtail possum (Trichosurus caninus). In this model increasing habitat selection means individuals obtain higher quality territories, but experience increased mortality during dispersal. The net effect is that population sizes are smaller when individuals actively select habitat. We find positive relationships between habitat quality and population size can occur when individuals do not use information about the entire landscape when habitat quality is spatially autocorrelated. We also find that individual behaviour can mitigate the negative effects of spatial variation on population average survival and fecundity. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the pattern of movement of young male and female rabbits and the genetic structures present in adult male and female populations in four habitats was examined. The level of philopatry in young animals was found to vary between 18-90% for males and 32-95% for females in different populations. It was skewed, with more males dispersing than females in some but not all populations. Analysis of allozyme data using spatial autocorrelation showed that adult females from the same social group, unlike males, were significantly related in four of the five populations studied. Changes in genetic structure and rate of dispersal were measured before and during the recovery of a population that was artificially reduced in size. There were changes in the rate and distance of dispersal with density and sex. Subadults of both sexes moved further in the first year post crash (low density) than in the following years. While the level of dispersal for females was lower than that of the males for the first 3 years, thereafter (high density) both sexes showed similar, low levels of dispersal (20%). The density at which young animals switch behaviour between dispersal and philopatry differed for males and females. The level of genetic structuring in adult females was high in the precrash population, reduced in the first year post crash and undetectable in the second year. Dispersal behaviour of rabbits both affects the genetic structure of the population and changes with conditions. Over a wide range of levels of philopatry, genetic structuring is present in the adult female, but not the male population. Consequently, though genetic structuring is present, it does not lead to inbreeding. More long-distance movements are found in low-density populations, even though vacant warrens are available near birth warrens. The distances moved decreased as density increased. Calculation of the effective population size (N-e) shows that changes in dispersal distance offset changes in density, so that N-e remains constant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For many species of marine invertebrates, variability in larval settlement behaviour appears to be the rule rather than the exception. This variability has the potential to affect larval dispersal, because settlement behaviour will influence the length of time larvae are in the plankton. Despite the ubiquity and importance of this variability, relatively few sources of variation in larval settlement behaviour have been identified. One important factor that can affect larval settlement behaviour is the nutritional state of larvae. Non-feeding larvae often become less discriminating in their 'choice' of settlement substrate, i.e. more desperate to settle, when energetic reserves run low. We tested whether variation in larval size (and presumably in nutritional reserves) also affects the settlement behaviour of 3 species of colonial marine invertebrate larvae, the bryozoans Bugula neritina and Watersipora subtorquata and the ascidian Diplosoma listerianum. For all 3 species, larger larvae delayed settlement for longer in the absence of settlement cues, and settlement of Bugula neritina larvae was accelerated by the presence of settlement cues, independently of larval size. In the field, larger W subtorquata larvae also took longer to settle than smaller larvae and were more discriminating towards settlement surfaces. These differences in settlement time are likely to result in differences in the distance that larvae disperse in the field. We suggest that species that produce non-feeding larvae can affect the dispersal potential of their offspring by manipulating larval size and thus larval desperation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mating order can have important consequences for the fertilization success of males whose ejaculates compete to fertilize a clutch of eggs. Despite an excellent body of literature on mating-order effects in many animals, they have rarely been considered in marine free-spawning invertebrates, where both sexes release gametes into the water column. In this study, we show that in such organisms, mating order can have profound repercussions for male reproductive success. Using in vitro fertilization for two species of sea urchin we found that the 'fertilization history' of a clutch of eggs strongly influenced the size distribution of unfertilized eggs, and consequently the likelihood that they will be fertilized. Males that had first access to a batch of eggs enjoyed elevated fertilization success because they had privileged access to the largest and therefore most readily fertilizable eggs within a clutch. By contrast, when a male's sperm were exposed to a batch of unfertilized eggs left over from a previous mating event, fertilization rates were reduced, owing to smaller eggs remaining in egg clutches previously exposed to sperm. Because of this size-dependent fertilization, the fertilization history of eggs also strongly influenced the size distribution of offspring, with first-spawning males producing larger, and therefore fitter, offspring. These findings suggest that when there is variation in egg size, mating order will influence not only the quantity but also the quality of offspring sired by competing males.