6 resultados para Mary Alice Lynch

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lynch's Crater preserves a continuous, high-resolution record of environmental changes in north Queensland. This record suggests a marked increase in burning that appears to be independent of any known major climatic boundaries. This increase is accompanied, or closely followed, by the virtually complete replacement of rainforest by sclerophyll vegetation. The absence of any major climatic shift associated with this increase in fire frequency therefore has been interpreted as a result of early human impact in the area. The age for this increase in burning, on the basis of conventional radiocarbon dating, was previously thought to be approximately 38000 C-14 yr BP, supporting the traditional model for human arrival in Australia at 40 000 C-14 yr BP Here we have applied a more rigorous pre-treatment and graphitisation procedure for radiocarbon dating samples from the Lynch's Crater sequence. These new dates suggest that the increase in fire frequency occurred at 45 000 C-14 yr BP, supporting the alternative view that human occupation of Australia occurred by at least 45 000-55 000 cal. yr BP. Copyright (C) 2001 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The St. Lawrence Island polynya (SLIP) is a commonly occurring winter phenomenon in the Bering Sea, in which dense saline water produced during new ice formation is thought to flow northward through the Bering Strait to help maintain the Arctic Ocean halocline. Winter darkness and inclement weather conditions have made continuous in situ and remote observation of this polynya difficult. However, imagery acquired from the European Space Agency ERS-1 Synthetic Aperture Radar (SAR) has allowed observation of the St. Lawrence Island polynya using both the imagery and derived ice displacement products. With the development of ARCSyM, a high resolution regional model of the Arctic atmosphere/sea ice system, simulation of the SLIP in a climate model is now possible. Intercomparisons between remotely sensed products and simulations can lead to additional insight into the SLIP formation process. Low resolution SAR, SSM/I and AVHRR infrared imagery for the St. Lawrence Island region are compared with the results of a model simulation for the period of 24-27 February 1992. The imagery illustrates a polynya event (polynya opening). With the northerly winds strong and consistent over several days, the coupled model captures the SLIP event with moderate accuracy. However, the introduction of a stability dependent atmosphere-ice drag coefficient, which allows feedbacks between atmospheric stability, open water, and air-ice drag, produces a more accurate simulation of the SLIP in comparison to satellite imagery. Model experiments show that the polynya event is forced primarily by changes in atmospheric circulation followed by persistent favorable conditions: ocean surface currents are found to have a small but positive impact on the simulation which is enhanced when wind forcing is weak or variable.