3 resultados para Marine zooplankton
em University of Queensland eSpace - Australia
Resumo:
Understanding how climate change will affect the planet is a key issue worldwide. Questions concerning the pace and impacts of climate change are thus central to many ecological and biogeochemical studies, and addressing the consequences of climate change is now high on the list of priorities for funding agencies. Here, we review the interactions between climate change and plankton communities, focusing on systematic changes in plankton community structure, abundance, distribution and phenology over recent decades. We examine the potential socioeconomic impacts of these plankton changes, such as the effects of bottom-up forcing on commercially exploited fish stocks (i.e. plankton as food for fish). We also consider the crucial roles that plankton might have in dictating the future pace of climate change via feedback mechanisms responding to elevated atmospheric CO2 levels. An important message emerges from this review: ongoing plankton monitoring programmes worldwide will act as sentinels to identify future changes in marine ecosystems.
Resumo:
Zooplankton reside in a constantly flowing environment. However, information about their response to ambient flow has remained elusive, because of the difficulties of following the individual motions of these minute, nearly transparent animals in the ocean. Using a three-dimensional acoustic imaging system, we tracked >375,000 zooplankters at two coastal sites in the Red Sea. Resolution of their motion from that of the water showed that the animals effectively maintained their depth by swimming against upwelling and downwelling currents moving at rates of up to tens of body lengths per second, causing their accumulation at frontal zones. This mechanism explains how oceanic fronts become major feeding grounds for predators and targets for fishermen.
Resumo:
Movements of wide-ranging top predators can now be studied effectively using satellite and archival telemetry. However, the motivations underlying movements remain difficult to determine because trajectories are seldom related to key biological gradients, such as changing prey distributions. Here, we use a dynamic prey landscape of zooplankton biomass in the north-east Atlantic Ocean to examine active habitat selection in the plankton-feeding basking shark Cetorhinus maximus. The relative success of shark searches across this landscape was examined by comparing prey biomass encountered by sharks with encounters by random-walk simulations of ‘model’ sharks. Movements of transmitter-tagged sharks monitored for 964 days (16754km estimated minimum distance) were concentrated on the European continental shelf in areas characterized by high seasonal productivity and complex prey distributions. We show movements by adult and sub-adult sharks yielded consistently higher prey encounter rates than 90% of random-walk simulations. Behavioural patterns were consistent with basking sharks using search tactics structured across multiple scales to exploit the richest prey areas available in preferred habitats. Simple behavioural rules based on learned responses to previously encountered prey distributions may explain the high performances. This study highlights how dynamic prey landscapes enable active habitat selection in large predators to be investigated from a trophic perspective, an approach that may inform conservation by identifying critical habitat of vulnerable species.