174 resultados para Marine technology
em University of Queensland eSpace - Australia
Resumo:
Carbonate sediments are dynamic three-dimensional environments where the surface layers are constantly moving and mixing due to the energy of the water column. It is also an environment of dynamic biological, chemical and physical interaction and modification. The biological community can actively influence changes to sediment characteristics and associated biochemistry. Bioturbation resulting from macrofaunal activity disrupts sediment structure and biochemical arrangements and reduces the critical shear forces required to move sediment particles, adding to the dynamic and complex physical and biogeochemical nature of the sediment. Laboratory studies using both planner optodes and glass needle microsensors were used to measure abiotic sediment characteristics such as the depth distribution and concentrations of PAR. The biochemical nature of coral reef sediment were also investigated, specifically the quantification and the distribution of dissolved oxygen within coarse and fine-grained sediments under regimes of light and darkness. Results highlighted the significant contribution microalgal productivity and bioturbation has on distribution of dissolved oxygen in the upper sediment layers. On the reef flat a shallow water lander system was employed to measure concentrations of O2, pH, S, Ca and temperature over periods of 24 to 48 hours in coarse and fine-grained sediments. Similarities between laboratory and in situ results where evident, however the in situ environment was more dynamic and the distribution and concentrations of dissolved oxygen were more complex and correlated to irradiance, temperature and biological activity. Microsensor technology provides us with the opportunity to study, at very high resolutions, the upper irradiated; photosynthetically active regions of aquatic sediments along with anoxic processes deeper in sub-euphotic regions of the sediments.
Resumo:
The relative importance of factors that may promote genetic differentiation in marine organisms is largely unknown. Here, contributions to population structure from biogeography, habitat distribution, and isolation by distance were investigated in Axoclinus nigricaudus, a small subtidal rock reef fish, throughout its range in the Gulf of California. A 408 basepair fragment of the mitochondrial control region was sequenced from 105 individuals. Variation was significantly partitioned between many pairs of populations. Phylogenetic analyses, hierarchical analyses of variance, and general linear models substantiated a major break between two putative biogeographic regions. This genetic discontinuity coincides with an abrupt change in ecological characteristics (including temperature and salinity) but does not coincide with known oceanographic circulation patterns. Geographic distance and the nature of habitat separating populations (continuous habitat along a shoreline, discontinuous habitat along a shoreline, and open water) also contributed to population structure in general linear model analyses. To verify that local populations are genetically stable over time, one population was resampled on four occasions over eighteen months; it showed no evidence of a temporal component to diversity. These results indicate that having a planktonic life stage does not preclude geographically partitioned genetic variation over relatively small geographic distances in marine environments. Moreover, levels of genetic differentiation among populations of Axoclinus nigricaudus cannot be explained by a single factor, but are due to the combined influences of a biogeographic boundary, habitat, and geographic distance.
Resumo:
The present study details new turbulence field measurements conducted continuously at high frequency for 50 hours in the upper zone of a small subtropical estuary with semi-diurnal tides. Acoustic Doppler velocimetry was used, and the signal was post-processed thoroughly. The suspended sediment concentration wad further deduced from the acoustic backscatter intensity. The field data set demonstrated some unique flow features of the upstream estuarine zone, including some low-frequency longitudinal oscillations induced by internal and external resonance. A striking feature of the data set is the large fluctuations in all turbulence properties and suspended sediment concentration during the tidal cycle. This feature has been rarely documented.
Resumo:
High-resolution measurements of velocity and physio-chemistry were conducted before, during and after the passage of a transient front in a small subtropical system about 2.1 km upstream of the river mouth. Detailed acoustic Doppler velocimetry measurements, conducted continuously at 25 Hz, showed the existence of transverse turbulent shear between 300 s prior to the front passage and 1300 s after. This was associated with an increased level of suspended sediment concentration fluctuations, some transverse shear next to the bed and some surface temperature anomaly.
Resumo:
Investigation of a southern Australian marine sponge, Mycale sp., resulted in isolation of the known norsesterterpenes 1-3 as well as two new isomeric norsesterterpenes, mycaperoxide C methyl ester (4) and mycaperoxide D methyl ester (5), and six new norterpenes (6-11).
Resumo:
Turtle excluder devices (TEDs) are being trialed on a voluntary basis in many Australian prawn (shrimp) trawl fisheries to reduce sea turtle captures. Analysis of TED introductions into shrimp trawl fisheries of the United States provided major insights into why conflicts occurred between shrimpers, conservationists, and government agencies. A conflict over the introduction and subsequent regulation of TEDs occurred because the problem and the solution were perceived differently by the various stakeholders. Attempts to negotiate and mediate the conflict broke down, resulting in litigation against the U.S. government by conservationists and shrimpers. Litigation was not an efficient resolution to the sea turtle-TED-trawl conflict but it appears that litigation was the only remaining path of resolution once the issue became polarized. We review two major Australian trawl fisheries to identify any significant differences in circumstances that may affect TED acceptance. Australian trawl fisheries are structured differently and good communication occurs between industry and researchers. TEDs are being introduced as mature technology. Furthermore, bycatch issues are of increasing concern to all stakeholders. These factors, combined with insights derived from previous conflicts concerning TEDs in the United Stares, increase the possibilities that TEDs will be introduced to Australian fishers with better acceptance.
Resumo:
A Sigmosceptrella sp. of sponge collected during trawling operations in the Great Australian Eight, Australia, has yielded a series of new norterpenes. These include a new bisnorditerpene, sigmosceptrin-A (5); two new norditerpenes, sigmosceptrin-B (14) and sigmosceptrin-C (15), isolated as their methyl esters (6) and (7) respectively; and an ethylated artefact, sigmosceptrin-B ethyl ester (8). Complete stereostructures were assigned to the sigmosceptrins by spectroscopic analysis, chemical degradation, derivatization, and by a single-crystal X-ray structural analysis. A biosynthetic pathway is proposed that requires a common biosynthetic precursor to both the sigmosceptrins and norterpene cyclic peroxides.
Resumo:
Chemical analysis of N. anomala collected off rock platforms along the southern coast of Australia yielded a cis-dihydroxytetrahydrofuran (2), the structure for which was assigned by spectroscopic analysis, chemical derivatization and biomimetic synthesis. Tetrahydrofurans from Notheia anomola are reported for the first time as potent and selective inhibitors of the larval development of parasitic nematodes. SAR observations are made on a selection of natural, semi-synthetic and synthetic tetrahydrofurans. (C) 1998 Elsevier Science Ltd. All rights reserved.