56 resultados para Marine environment
em University of Queensland eSpace - Australia
Resumo:
Some methoxylated polybrominated diphenyl ethers (MeO-BDEs) are known halogenated natural products (HNPs) and are frequently detected in higher organisms of the marine environment. In this study we demonstrate that a prominent MeO-BDE, previously detected in marine mammals from Australia, is identical to 3,5-dibromo-2-(2',4'-dibromo)phenoxyanisole(BC-3,6-MeO-BDE47). Up to 1.9mg/ kg of 6-MeO-BDE 47 was present in cetaceans from Australia, 0.2-0.3 mg/kg in two crocodile eggs from Australia, but concentrations of 1 or 2 orders of magnitude lower were found in shark liver oil from New Zealand and in marine mammals from Africa and the Antarctic. Concentrations of 6-MeO-BDE47 in samples from Australia were in the same range as anthropogenic pollutants such as PCB 153 and p,p'-DDE. Along with 6-MeO-BDE 47 and the known HNP 4,6-dibromo-2-(2',4'-dibromo)phenoxyanisole (BC-2,2'-MeO-BDE 68), several tribromophenoxyanisoles (MeO-triBDE) were present in tissue of Australian cetaceans. To determine their structure, abiotic debromination experiments were performed using 6-MeO-BDE 47 and 2'-MeO-BDE 68 and superreduced di cyanocobalamine. These experiments resulted in formation of eight MeO-triBDEs, all of which were detected in the cetacean samples. Five of these eight MeO-triBDEs could be identified based on two standard compounds as well as gas chromatographic and mass spectrometric features. It was also shown that the first eluting isomer (compound 1), 6-MeO-BDE 17 (compound 2), and 2-MeO-BDE 39 (compound 5) were the most prominent MeO-triBDEs in the Australian cetacean samples. The concentrations of the MeO-triBDEs in two cetacean samples were 0.20 and 0.36 mg/kg, respectively. Although the reductive debromination with dicyanocobalamine resulted in a different congener pattern than was found in the marine mammals, it could not be excluded that the tribromo congeners of 6-MeO-BDE 47 and 2'-MeO-BDE 68 in the samples were metabolites of the latter.
Resumo:
Recent analyses assert that large marine vertebrates such as marine mammals are now 'functionally or entirely extinct in most coastal ecosystems'. Moreton Bay is a large diverse marine ecosystem bordering the fastest growing area in Australia. The human population is over 1.6 million and increasing yearly by between 10% and 13% with resultant impacts upon the adjoining marine environment. Nonetheless, significant populations of three species of marine mammals are resident within Moreton Bay and a further 14 species are seasonal or occasional visitors. This paper reviews the current and historical distributions and abundance of these species in the context of the current management regime and suggests initiatives to increase the resilience of marine mammal populations to the changes wrought by the burgeoning human population in coastal environments. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Harmful algal blooms (HABs) have increased in abundance and severity in recent decades. Whereas the implications for human impacts and intoxication resulting from blooms have been extensively studied, the ecological implications of these microalgae are less well understood. Many HAB species produce biologically active, secondary metabolites and the fate of these toxins through the foodweb is generally not well understood unless it culminates in extensive fish mortalities or human poisonings. This review focusses on one HAB species, the cyanobacterium Lyngbya majuscula, and presents a hypothetical role for its involvement in fibro-papillornatosis (FP), a neoplastic disease of marine turtles. FP is expressed as benign tumours that grow both internally and externally on marine turtles, preventing vision, movement and organ function. The aetiology of FP is currently not conclusively understood, but virus material has been associated with tumours and previous studies have suggested a role for naturally produced tumour promoters. In this review, we present a hypothesis regarding the involvement of L. majuscula in FP, either through direct intoxication and action of tumour-promoting compounds or indirectly by causing seagrass loss and compromised immune function, thus leaving the turtles more susceptible to disease.
Resumo:
Over the past 30 years, numerous attempts to understand the relationship between offspring size and fitness have been made, and it has become clear that this critical relationship is strongly affected by environmental heterogeneity. For marine invertebrates, there has been a long-standing interest in the evolution of offspring size, but there have been very few empirical and theoretical examinations of post-metamorphic offspring size effects, and almost none have considered the effect of environmental heterogeneity on the offspring size/fitness relationship. We investigated the post-metamorphic effects of offspring size in the field for the colonial marine invertebrate Botrylloides violaceus. We also examined how the relationship between offspring size and performance was affected by three different types of intraspecific competition. We found strong and persistent effects of offspring size on survival and growth, but these effects depended on the level and type of intraspecific competition.. Generally, competition strengthened the advantages of increasing maternal investment. Interestingly, we found that offspring size determined the outcome of competitive interaction: juveniles that had more maternal investment were more likely to encroach on another juvenile's territory. This suggests that mothers have the previously unrecognized potential to influence the outcome of competitive interactions in benthic marine invertebrates. We created a simple optimality model, which utilized the data generated from our field experiments, and found that increasing intraspecific competition resulted in an increase,in predicted optimal size. Our results suggest that the relationship between offspring size and fitness is highly variable in the marine environment and strongly dependent on the density of conspecifics.
Resumo:
Protection of the Marine Environment from Sewage