5 resultados para Marine algae.

em University of Queensland eSpace - Australia


Relevância:

70.00% 70.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Solieriaceae, has the largest number of genera (16-18) of any family in the carrageenophyte order Gigartinales. One of these genera, Meristotheca, consists of three or four species of foliose, erect to prostrate plants sporadically recorded from the tropics of both hemispheres. The hot-water-soluble polysaccharides from Australian representatives of the type species, M. papulosa, and M. procumbens from Lord Howe Island have been characterized by compositional assays, linkage analysis, and Fourier transform infrared and C-13-nuclear magnetic resonance spectroscopy. The results show that polysaccharides from both species are similar, being predominantly composed of 4-linked 3,6-anhydro-alpha-D-galactopyranose 2-sulphate alternating with 3-linked beta-D-galactopyranose 4-sulphate, as is typical of iota-carrageenan. Small proportions of the 3-linked units occur as the pyruvated residue 4,6-O-(1-carboxyethylidene)-beta-D-galactopyranose, and other minor variations from idealized iota-carrageenan were also detected. The polysaccharides from representatives of Meristotheca are comparable to those of other solieriacean algae analysed to date, but the minor structural variations suggest a closer chemotaxonomic affinity with noneucheumoid genera of the Solieriaceae, such as Sarconema, Solieria, and Tikvahiella, than to the eucheumoid genera Eucheuma, Kappaphycus and Betaphycus (tribe Eucheumatoideae) from which most kappa- and iota-carrageenans are commercially extracted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photoacclimation of endolithic algae ( of the genus Ostreobium) inhabiting the skeleton of the Mediterranean coral Oculina patagonica during a bleaching event was examined. Pulse amplitude modulated (PAM) chlorophyll fluorescence techniques in situ were used to assess the photosynthetic efficiency of endolithic algae in the coral skeleton and the symbiotic dinoflagellates (zooxanthellae) in the coral tissue. Relative photosynthetic electron transport rates (ETRs) of the endolithic algae under bleached areas of the colony were significantly higher than those of endolithic algae from a healthy section of the colony and those of zooxanthellae isolated from the same section. Endolithic algae under healthy parts of the colony demonstrated an ETRmax of 16.5% that of zooxanthellae from tissue in the same section whereas endolithic algae under bleached sections showed ETRmax values that were 39% of those found for healthy zooxanthellae. The study demonstrates that endolithic algae undergo photoacclimation with increased irradiance reaching the skeleton. As PAM fluorometry has become a major tool for assessing levels of stress and bleaching in corals, the importance of considering the contribution of the endolithic algae to the overall chlorophyll fluorescence measured is highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photosynthetic endolithic algae and cyanobacteria live within the skeletons of many scleractinians. Under normal conditions, less than 5% of the photosynthetically active radiation (PAR) reaches the green endolithic algae because of the absorbance of light by the endosymbiotic dinoflagellates and the carbonate skeleton. When corals bleach (loose dinoflagellate symbionts), however, the tissue of the corals become highly transparent and photosynthetic microendoliths may be exposed to high levels of both thermal and solar stress. This study explores the consequence of these combined stresses on the phototrophic endoliths inhabiting the skeleton of Montipora monasteriata, growing at Heron Island, on the southern Great Barrier Reef. Endoliths that were exposed to sun after tissue removal were by far more susceptible to thermal photoinhibition and photo-damage than endoliths under coral tissue that contained high concentrations of brown dinoflagellate symbionts. While temperature or light alone did not result in decreased photosynthetic efficiency of the endoliths, combined thermal and solar stress caused a major decrease and delayed recovery. Endoliths protected under intact tissue recovered rapidly and photoacclimated soon after exposure to elevated sea temperatures. Endoliths under naturally occurring bleached tissue of M. monasteriata colonies (bleaching event in March 2004 at Heron Island) acclimated to increased irradiance as the brown symbionts disappeared. We suggest that two major factors determine the outcome of thermal bleaching to the endolith community. The first is the microhabitat and light levels under which a coral grows, and the second is the susceptibility of the coral-dinoflagellates symbiosis to thermal stress. More resistant corals may take longer to bleach allowing endoliths time to acclimate to a new light environment. This in turn may have implications for coral survival.