3 resultados para Mantle dynamics
em University of Queensland eSpace - Australia
Resumo:
The paper presents a new theory for modeling flow in anisotropic, viscous rock. This theory has originally been developed for the simulation of large deformation processes including folding and kinking in multi-layered visco-elastic rock. The orientation of slip planes in the context of crystallographic slip is determined by the normal vector, the so-called director of these surfaces. The model is applied to simulate anisotropic natural mantle convection. We compare the evolution of the director and approximately steady states of isotropic and anisotropic convection. The isotropic case has a simple steady state solution, whereas the orthotropic convection model produces a continuously evolving patterning in tile core of the convection cell which makes only a near-steady condition possible, in which the thermal boundary layer appears to be well aligned with the flow and hence as observed in seismic tomomgraphy strong anistropic.
Resumo:
The first terrestrial Pb-isotope paradox refers to the fact that on average, rocks from the Earth's surface (i.e. the accessible Earth) plot significantly to the right of the meteorite isochron in a common Pb-isotope diagram. The Earth as a whole, however, should plot close to the meteorite isochron, implying the existence of at least one terrestrial reservoir that plots to the left of the meteorite isochron. The core and the lower continental crust are the two candidates that have been widely discussed in the past. Here we propose that subducted oceanic crust and associated continental sediment stored as garnetite slabs in the mantle Transition Zone or mid-lower mantle are an additional potential reservoir that requires consideration. We present evidence from the literature that indicates that neither the core nor the lower crust contains sufficient unradiogenic Pb to balance the accessible Earth. Of all mantle magmas, only rare alkaline melts plot significantly to the left of the meteorite isochron. We interpret these melts to be derived from the missing mantle reservoir that plots to the left of the meteorite isochron but, significantly, above the mid-ocean ridge basalt (MORB)-source mantle evolution line. Our solution to the paradox predicts the bulk silicate Earth to be more radiogenic in Pb-207/Pb-204 than present-day MORB-source mantle, which opens the possibility that undegassed primitive mantle might be the source of certain ocean island basalts (OIB). Further implications for mantle dynamics and oceanic magmatism are discussed based on a previously justified proposal that lamproites and associated rocks could derive from the Transition Zone.
Resumo:
In mantle convection models it has become common to make use of a modified (pressure sensitive, Boussinesq) von Mises yield criterion to limit the maximum stress the lithosphere can support. This approach allows the viscous, cool thermal boundary layer to deform in a relatively plate-like mode even in a fully Eulerian representation. In large-scale models with embedded continental crust where the mobile boundary layer represents the oceanic lithosphere, the von Mises yield criterion for the oceans ensures that the continents experience a realistic broad-scale stress regime. In detailed models of crustal deformation it is, however, more appropriate to choose a Mohr-Coulomb yield criterion based upon the idea that frictional slip occurs on whichever one of many randomly oriented planes happens to be favorably oriented with respect to the stress field. As coupled crust/mantle models become more sophisticated it is important to be able to use whichever failure model is appropriate to a given part of the system. We have therefore developed a way to represent Mohr-Coulomb failure within a code which is suited to mantle convection problems coupled to large-scale crustal deformation. Our approach uses an orthotropic viscous rheology (a different viscosity for pure shear to that for simple shear) to define a prefered plane for slip to occur given the local stress field. The simple-shear viscosity and the deformation can then be iterated to ensure that the yield criterion is always satisfied. We again assume the Boussinesq approximation - neglecting any effect of dilatancy on the stress field. An additional criterion is required to ensure that deformation occurs along the plane aligned with maximum shear strain-rate rather than the perpendicular plane which is formally equivalent in any symmetric formulation. It is also important to allow strain-weakening of the material. The material should remember both the accumulated failure history and the direction of failure. We have included this capacity in a Lagrangian-Integration-point finite element code and will show a number of examples of extension and compression of a crustal block with a Mohr-Coulomb failure criterion, and comparisons between mantle convection models using the von Mises versus the Mohr-Coulomb yield criteria. The formulation itself is general and applies to 2D and 3D problems, although it is somewhat more complicated to identify the slip plane in 3D.