37 resultados para Mangrove Sediments
em University of Queensland eSpace - Australia
Resumo:
This field study was a combined chemical and biological investigation of the relative effects of using dispersants to treat oil spills impacting mangrove habitats. The aim of the chemistry was to determine whether dispersant affected the short- or long-term composition of a medium range crude oil (Gippsland) stranded in a tropical mangrove environment in Queensland, Australia. Sediment cores from three replicate plots of each treatment (oil only and oil plus dispersant) were analyzed for total hydrocarbons and for individual molecular markers (alkanes, aromatics, triterpanes, and steranes). Sediments were collected at 2 days, then 1, 7, 13 and 22 months post-spill. Over this time, oil in the six treated plots decreased exponentially from 36.6 +/- 16.5 to 1.2 +/- 0.8 mg/g dry wt. There was no statistical difference in initial oil concentrations, penetration of oil to depth, or in the rates of oil dissipation between oiled or dispersed oil plots. At 13 months, alkanes were >50% degraded, aromatics were similar to 30% degraded based upon ratios of labile to resistant markers. However, there was no change in the triterpane or sterane biomarker signatures of the retained oil. This is of general forensic interest for pollution events. The predominant removal processes were evaporation (less than or equal to 27%) and dissolution (greater than or equal to 56%), with a lag-phase of 1 month before the start of significant microbial degradation (less than or equal to 7%). The most resistant fraction of the oil that remained after 7 months (the higher molecular weight hydrocarbons) correlated with the initial total organic carbon content of the soil. Removal rate in the Queensland mangroves was significantly faster than that observed in the Caribbean and was related to tidal flushing. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Strategies for sampling sediment bacteria were examined in intensive shrimp, Penaeus monodon (Fabricius), ponds in tropical Australia. Stratified sampling of bacteria at the end of the production season showed that the pond centre, containing flocculated sludge, had significantly higher bacterial counts (15.5 X 10(9) g(-1) dw) than the pond periphery (8.1 X 10(9) g(-1) dw), where the action of aerators had swept the pond floor. The variation in bacterial counts between these two zones within a pond was higher than that between sites within each zone or between ponds. Therefore, sampling effort should be focused within these zones: for example, sampling two ponds at six locations within each of the two zones resulted in a coefficient of variation of approximate to 5%. Bacterial numbers in the sediment were highly correlated with sediment grain size, probably because eroded soil particles and organic waste both accumulated in the centre of the pond. Despite high inputs of organic matter added to the ponds, principally as pelleted feeds, the mean bacterial numbers and nutrient concentrations (i.e. organic carbon, nitrogen and phosphorus) in the sediment were similar to those found in mangrove sediments. This suggests that bacteria are rapidly remineralizing particulates into soluble compounds. Bacterial numbers were highly correlated with organic carbon and total kjeldahl nitrogen in the sediment, suggesting that these were limiting factors to bacterial growth.
Resumo:
Root respiration uses a significant proportion of photosynthetically fixed carbon (C) and is a globally important source of C liberated from soils. Mangroves, which are an important and productive forest resource in many tropical and subtropical countries, sustain a high ratio of root to shoot biomass which may indicate that root respiration is a particularly important component in mangrove forest carbon budgets. Mangroves are often exposed to nutrient pollution from coastal waters. Here we assessed the magnitude of fine root respiration in mangrove forests in Belize and investigated how root respiration is influenced by nutrient additions. Respiration rates of excised fine roots of the mangrove, Rhizophora mangle L., were low (4.01 +/- 0.16 nmol CO2 g(-1) s(-1)) compared to those measured in temperate tree species at similar temperatures. In an experiment where trees where fertilized with nitrogen (N) or phosphorus (P) in low productivity dwarf forests (1-2 m height) and more productive, taller (47 m height) seaward fringing forests, respiration of fine roots did not vary consistently with fertilization treatments or with forest stature. Fine roots of taller fringe trees had higher concentrations of both N and P compared to dwarf trees. Fertilization with P enhanced fine root P concentrations in both dwarf and fringe trees, but reduced root N concentrations compared to controls. Fertilization with N had no effect on root N or P concentrations. Unlike photosynthetic C gain and growth, which is strongly limited by P availability in dwarf forests at this site, fine root respiration (expressed on a mass basis) was variable, but showed no significant enhancements with nutrient additions. Variation in fine root production and standing biomass are, therefore, likely to be more important factors determining C efflux from mangrove sediments than variations in fine root respiration per unit mass.
Resumo:
Management of coastal environments requires understanding of ecological relationships among different habitats and their biotas. Changes in abundance and distribution of mangroves, like those of other coastal habitats, have generally been interpreted in terms of changes in biodiversity or fisheries resources within individual stands. In several parts of their range, anthropogenically increased inputs of sediment to estuaries have led to the spread of mangroves. There is, however, little information on the relative ecological properties, or conservational values, of stands of different ages. The faunal, floral and sedimentological properties of mangrove (Avicennia marina var. australasica) stands of two different ages in New Zealand has been compared. Older (>60 years) and younger (3-12 years) stands showed clear separation on the basis of environmental characteristics and benthic macrofauna. Numbers of faunal taxa were generally larger at younger sites, and numbers of individuals of several taxa were also larger at these sites. The total number of individuals was not different between the two age-classes, largely due to the presence of large numbers of the surface-living gastropod Potamopyrgus antipodarum at the older sites. It is hypothesized that as mangrove stands mature, the focus of faunal diversity may shift from the benthos to animals living on the mangrove plants themselves, such as insects and spiders, though these were not included in the present study. Differences in the faunas were coincident with differences in the nature of the sediment. Sediments in older stands were more compacted and contained more organic matter and leaf litter. Measurement of leaf chemistry suggested that mangrove plants in the younger stands were able to take up more N and P than those in the older stands. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Marine plants colonise several interconnected ecosystems in the Great Barrier Reef region including tidal wetlands, seagrass meadows and coral reefs. Water quality in some coastal areas is declining from human activities. Losses of mangrove and other tidal wetland communities are mostly the result of reclamation for coastal development of estuaries, e.g. for residential use, port infrastructure or marina development, and result in river bank destabilisation, deterioration of water clarity and loss of key coastal marine habitat. Coastal seagrass meadows are characterized by small ephemeral species. They are disturbed by increased turbidity after extreme flood events, but generally recover. There is no evidence of an overall seagrass decline or expansion. High nutrient and substrate availability and low grazing pressure on nearshore reefs have lead to changed benthic communities with high macroalgal abundance. Conservation and management of GBR macrophytes and their ecosystems is hampered by scarce ecological knowledge across macrophyte community types. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Herbicides, particularly diuron, were correlated with severe and widespread dieback of the dominant mangrove, Avicennia marina (Forsk.) Vieth. var. eucalyptifolia (Val.) N.C. Duke (Avicenniaceae), its reduced canopy condition, and declines in seedling health within three neighbouring estuaries in the Mackay region of NE Australia. This unusual species-specific dieback, first observed in the early 1990s, had gotten notably worse by 2002 to affect > 30km(2) of mangroves in at least five adjacent estuaries in the region. Over the past century, agricultural production has responded well to the demands of increasing population with improvements in farm efficiency assisted by significant increases in the use of agricultural chemicals. However, with regular and episodic river flow events, these chemicals have sometimes found their way into estuarine and nearshore water and sediments where their effects on marine habitats have been largely unquantified. Investigations over the last three years in the Mackay region provide compelling evidence of diuron, and possibly other agricultural herbicides, as the most likely cause of the severe and widespread mangrove dieback. The likely consequences of such dieback included declines in coastal water quality with increased turbidity, nutrients and sediment deposition, as well as further dispersal of the toxic chemicals. The implications of such findings are immense since they describe not only the serious deterioration of protected and beneficial mangrove habitat but also the potential for significant direct and indirect effects on other highly-valued estuarine and marine habitats in the region, including seagrass beds and coral reefs of the Great Barrier Reef lagoon. This article reviews all key findings and observations to date and describes the essential correlative and causative evidence. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The distribution of anaerobic ammonium oxidation (anammox) in nature has been addressed by only a few environmental studies, and our understanding of how anammox bacteria compete for substrates in natural environments is therefore limited. In this study, we measure the potential anammox rates in sediment from four locations in a subtropical tidal river system. Porewater profiles of NOx- (NO2- plus NO3-) and NO2- were measured with microscale biosensors, and the availability of NO2- was compared with the potential for anammox activity. The potential rate of anammox increased with increasing distance from the mouth of the river and correlated strongly with the production of nitrite in the sediment and with the average concentration or total pool of nitrite in the suboxic sediment layer. Nitrite accumulated both from nitrification and from NOx- reduction, though NOx- reduction was shown to have the greatest impact on the availability of nitrite in the suboxic sediment layer. This finding suggests that denitrification, though using NO2- as a substrate, also provides a substrate for the anammox process, which has been suggested in previous studies where microscale NO2- profiles were not measured.
Resumo:
At Brisbane Airport, the construction of a diversion channel for Kedron Brook exposed a former beach, low cliff and sand spit, which, with their associated sediments and acid sulfate soils, demonstrate a postglacial high sea-level 1.3 - 1.4 m above present mean sea-level. The beach appears to date from 4000 to 5000 y BP. It varies in level where it lies above soft ground; these variations, and sag depressions that follow buried streamlines, indicate sediment consolidation since withdrawal of the sea from the former shore. Most of the area consists of former estuarine deposits, mangrove and saline marshes, and stranded tidal flats on which acid sulfate soils are widely developed. The modern landforms mostly reproduce subsurface features, to the extent that the surface relief replicates the landscape transgressed by the sea 7000 years ago. A small rise of sea-level possibly to +0.65 m occurred about 2000-3000 years ago. Foredunes near the present shore that are related to a slightly lower level 1000 - 500 years ago (-0.25 m) are currently subject to wave erosion.
Resumo:
Allozyme variation in species of the mangrove genus Avicennia was screened in 25 populations collected from 22 locations in the Indo-West Pacific and eastern North America using 11 loci. Several fixed gene differences supported the specific status of Avicennia alba, A. integra, A. marina, and A. rumphiana from the Indo-West Pacific, and A. germinans from the Atlantic-East Pacific. The three varieties of A. marina, var. marina, var. eucalyptifolia, and var. australasica, had higher genetic similarities (Nei's I) and no fixed gene differences, confirming their conspecific status. Strong genetic structuring was observed in A. marina, with sharp changes in gene frequencies at the geographical margins of varietal distributions. The occurrence of alleles found otherwise in only one variety, in only immediately adjacent populations of another variety, provided evidence of introgession between varieties. The varieties appear to have diverged recently in the Pleistocene and are apparently not of ancient Cretaceous origin, as suggested earlier. Despite evidence of high degrees of outcrossing, gene flow among populations was relatively low (N(e)m less than or equal to 1-2), except where populations were geographically continuous, questioning assumptions that these widespread mangrove species achieve high levels of long-distance dispersal.
Late Quaternary cycles of mangrove development and decline on the north Australian continental shelf
Resumo:
Mangrove communities in the Australian tropics presently occur as narrow belts of vegetation in estuaries and on sheltered, muddy coasts. Palynological data from continental shelf and deep-sea cores indicate a long-term cyclical component of mangrove development and decline at a regional scale, which can be linked to specific phases of late Quaternary sealevel change. Extensive mangrove development, relative to today, occurs during periods of marine transgression, whereas very diminished mangrove occurs during marine regressions and during rarer periods of relative sea-level stability. Episodes of flourishing mangrove cannot be linked to phases of humid climate, as has been suggested in studies elsewhere. Rather, the cycle of expansion and decline of mangrove communities on a grand scale is explained in terms of contrasting physiographic settings characteristic of continental-shelf coasts during transgressive and regressive phases, in particular by the existence, or lack, of well-developed tidal estuaries. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
The abundance and species richness of mollusc and crab assemblages were examined in a subtropical mangrove forest in Moreton Bay, Queensland, Australia, which has been disturbed and damaged by the construction of a wooden boardwalk and a path. Sections of the forest immediately adjacent to the boardwalk and path were compared with reference areas to determine whether changes to the small-scale structural complexity within the forest affected the benthic fauna. The disturbed area was characterised by having 65-80% fewer pneumatophores, significantly fewer species and individuals of molluscs, but significantly more species and individuals of crabs than the reference areas. The abundance of mangrove pneumatophores and the attached epiphytic algae were manipulated at two sites to determine whether observed differences in these features could account for the differences in the assemblage of molluscs in the disturbed area of the forest compared with reference areas. Five experimental treatments were used: undisturbed controls, pneumatophore removals (abundance reduced by ca. 65%), epiphytic algal removals (algae removed from ca. 65% of pneumatophores), pneumatophore disturbance controls and algal disturbance controls. The experimental reduction of the abundance of mangrove pneumatophores and the associated epiphytic algae led to significant declines (by as much as 83%) in the number of molluscs utilising the substratum in the modified plots. There was no significant difference in the abundance of molluscs in the pneumatophore and algal removal plots suggesting any effect was primarily related to removal of the epiphytic algae from the surface of the pneumatophores. The responses by the biota to the changes in the physical environment demonstrate that even relatively small-scale modifications to the physical structure of subtropical mangrove forests can lead to significant effects on the diversity and abundance of macrobenthic organisms in these habitats. Such modifications have the potential to cause cascading effects at higher trophic levels with a deterioration in the value of these habitats as nursery and feeding grounds. Future efforts at conservation of these estuarine environments must focus on the prevention or reduction of modifications to the physical structure and integrity of the system, rather than just on the prevention of loss of entire patches of habitat. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The action of water waves moving over a porous seabed drives a seepage flux into and out of the marine sediments. The volume of fluid exchange per wave cycle may affect the rate of contaminant transport in the sediments. In this paper, the dynamic response of the seabed to ocean waves is treated analytically on the basis of pore-elastic theory applied to a porous seabed. The seabed is modelled as a semi-infinite, isotropic, homogeneous material. Most previous investigations on the wave-seabed interaction problem have assumed quasi-static conditions within the seabed, although dynamic behaviour often occurs in natural environments. Furthermore, wave pressures used in the previous approaches were obtained from conventional ocean wave theories: which are based on the assumption of an impermeable rigid seabed. By introducing a complex wave number, we derive a new wave dispersion equation, which includes the seabed characteristics (such as soil permeability, shear modulus, etc.). Based on the new closed-form analytical solution, the relative differences of the wave-induced seabed response under dynamic and quasi-static conditions are examined. The effects of wave and soil parameters on the seepage flux per wave cycle are also discussed in detail. (C) 2000 Elsevier Science Ltd. All rights reserved.