4 resultados para Mammal populations
em University of Queensland eSpace - Australia
Resumo:
Recent analyses assert that large marine vertebrates such as marine mammals are now 'functionally or entirely extinct in most coastal ecosystems'. Moreton Bay is a large diverse marine ecosystem bordering the fastest growing area in Australia. The human population is over 1.6 million and increasing yearly by between 10% and 13% with resultant impacts upon the adjoining marine environment. Nonetheless, significant populations of three species of marine mammals are resident within Moreton Bay and a further 14 species are seasonal or occasional visitors. This paper reviews the current and historical distributions and abundance of these species in the context of the current management regime and suggests initiatives to increase the resilience of marine mammal populations to the changes wrought by the burgeoning human population in coastal environments. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
In the present paper, we have provided an initial assessment of the current and future threats to biodiversity posed by introduced mammals (predators and herbivores) inhabiting the Australian rangelands, exploring trends in populations and options for management. Notably, rabbits have declined in recent years in the wake of rabbit haemorrhagic disease, populations of feral camels have increased dramatically and foxes appear to have moved northwards, thereby threatening native fauna within an expanded range. Following on, we developed a framework for monitoring the impacts of introduced mammals in the Australian rangelands. In doing so, we considered the key issues that needed to be considered in designing a monitoring programme for this purpose and critically evaluated the role of monitoring in pest animal management. Finally we have provided a brief inventory of current best-practice methods of estimating the abundance of introduced mammal populations in the Australian rangelands with some comments on new approaches and their potential applications.
Resumo:
Native mammal populations in Southeast Queensland are under threat from habitat loss through land development, dog attacks and motor vehicle accidents. Animals that are not killed from these impacts are sometimes rescued, rehabilitated and later released back into the wild, usually in their area of origin. Although the release of these animals is a relatively common practice, little post release monitoring has been carried out and reported to assess the success of the animals in the wild. This paper discusses the results of three recent studies which have monitored the movements and health of rehabilitated and translocated koalas (Phascolarctos ciniereus) and common brushtail possums (Trichosurus vulpecular): one conducted by Wildcare Australia in 1995- 1996, the other two in collaboration with the University of Queensland. The results indicate that the survival and health of the great majority of the released animals were good and that they were usually able to establish new home ranges during the tracking period. Such findings seem to contradict the results of studies conducted in southern Australia which have monitored the release of translocated possums and gliders, and suggest that there are some key factors which may be critical in determining the success of such releases. These factors include the age of admission and the duration of care, and in particular the selection of the release site. With both koalas and brushtail possums, the release site was found to be critical in determining both the survival and dispersal of the released animals. Consequently, while these studies confirm that the reintroduction of koalas and common brushtail possums may be a viable management strategy, the individual characteristics of the animals themselves and of their release areas must be carefully considered. It is recommended that further research of these key release factors be undertaken and that the work be extended for other species which are commonly released following rehabilitation.
Resumo:
Ecological genetic studies have demonstrated that spatial patterns of mating dispersal, the dispersal of gametes through mating behaviour, can facilitate inbreeding avoidance and strongly influence the structure of populations, particularly in highly philopatric species. Elements of breeding group dynamics, such as strong structuring and sex-biased dispersal among groups, can also minimize inbreeding and positively influence levels of genetic diversity within populations. Rock-wallabies are highly philopatric mid-sized mammals whose strong dependence on rocky terrain has resulted in series of discreet, small colonies in the landscape. Populations show no signs of inbreeding and maintain high levels of genetic diversity despite strong patterns of limited gene flow within and among colonies. We used this species to investigate the importance of mating dispersal and breeding group structure to inbreeding avoidance within a 'small' population. We examined the spatial patterns of mating dispersal, the extent of kinship within breeding groups, and the degree of relatedness among brush-tailed rock-wallaby breeding pairs within a colony in southeast Queensland. Parentage data revealed remarkably restricted mating dispersal and strong breeding group structuring for a mid-sized mammal. Breeding groups showed significant levels of female kinship with evidence of male dispersal among groups. We found no evidence for inbreeding avoidance through mate choice; however, anecdotal data suggest the importance of life history traits to inbreeding avoidance between first-degree relatives. We suggest that the restricted pattern of mating dispersal and strong breeding group structuring facilitates inbreeding avoidance within colonies. These results provide insight into the population structure and maintenance of genetic diversity within colonies of the threatened brush-tailed rock-wallaby.