3 resultados para Malus domestica Borkh

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The apposition compound eyes of gonodactyloid stomatopods are divided into a ventral and a dorsal hemisphere by six equatorial rows of enlarged ommatidia, the mid-band (MB). Whereas the hemispheres are specialized for spatial vision, the MB consists of four dorsal rows of ommatidia specialized for colour vision and two ventral rows specialized for polarization vision. The eight retinula cell axons (RCAs) from each ommatidium project retinotopically onto one corresponding lamina cartridge, so that the three retinal data streams (spatial, colour and polarization) remain anatomically separated. This study investigates whether the retinal specializations are reflected in differences in the RCA arrangement within the corresponding lamina cartridges. We have found that, in all three eye regions, the seven short visual fibres (svfs) formed by retinula cells 1-7 (R1-R7) terminate at two distinct lamina levels, geometrically separating the terminals of photoreceptors sensitive to either orthogonal e-vector directions or different wavelengths of light. This arrangement is required for the establishment of spectral and polarization opponency mechanisms. The long visual fibres (lvfs) of the eighth retinula cells (R8) pass through the lamina and project retinotopically to the distal medulla externa. Differences between the three eye regions exist in the packing of svf terminals and in the branching patterns of the lvfs within the lamina. We hypothesize that the R8 cells of MB rows 1-4 are incorporated into the colour vision system formed by R1-R7, whereas the R8 cells of MB rows 5 and 6 form a separate neural channel from R1 to R7 for polarization processing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The function of the prion protein gene (PRNP) and its normal product PrPC is elusive. We used comparative genomics as a strategy to understand the normal function of PRNP. As the reliability of comparisons increases with the number of species and increased evolutionary distance, we isolated and sequenced a 66.5 kb BAC containing the PRNP gene from a distantly related mammal, the model Australian marsupial Macropus eugenii (tammar wallaby). Marsupials are separated from eutherians such as human and mouse by roughly 180 million years of independent evolution. We found that tammar PRNP, like human PRNP, has two exons. Prion proteins encoded by the tammar wallaby and a distantly related marsupial, Monodelphis domestica (Brazilian opossum) PRNP contain proximal PrP repeats with a distinct, marsupial-specific composition and a variable number. Comparisons of tammar wallaby PRNP with PRNPs from human, mouse, bovine and ovine allowed us to identify non-coding gene regions conserved across the marsupial-eutherian evolutionary distance, which are candidates for regulatory regions. In the PRNP 3' UTR we found a conserved signal for nuclear-specific polyadenylation and the putative cytoplasmic polyadenylation element (CPE), indicating that post-transcriptional control of PRNP mRNA activity is important. Phylogenetic footprinting revealed conserved potential binding sites for the MZF-1 transcription factor in both upstream promoter and intron/intron 1, and for the MEF2, MyTI, Oct-1 and NFAT transcription factors in the intron(s). The presence of a conserved NFAT-binding site and CPE indicates involvement of PrPC in signal transduction and synaptic plasticity. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maternal recognition of pregnancy in marsupials occurs in more subtle ways than it does in eutherians. For instance, unlike in eutherians, the plasma progesterone profiles of pregnant and non-pregnant animals are similar during the luteal phase. It is typically during the brief luteal phase that both gestation and parturition occur in marsupials. Yet histological and physiological changes have been documented between gravid and non-gravid uteri in certain monovular marsupials and between pregnant and non-pregnant animals in polyovular marsupials. Early pregnancy factor (EPF), a 10.8-kDa serum protein known to be homologous to chaperonin 10, is associated with maternal immunosuppression, embryonic development and pregnancy in eutherian mammals. It has been reported in two Australian marsupials: the dasyurid Sminthopsis macroura and the phalangerid Trichosurus vulpecula. This paper documents its occurrence in the New World didelphid Monodelphis domestica. EPF is detectable by rosette inhibition assay in the peripheral circulation of pregnant but not of non-pregnant or pseudopregnant animals. Our work focuses on the embryo–maternal signalling role of EPF during pregnancy. Because progesterone-driven changes are similar in pregnant and non-pregnant marsupials, these animals are an excellent laboratory model in which to investigate the role of EPF in orchestrating the physiological changes necessary to sustain pregnancy.