2 resultados para Malicious mischief.
em University of Queensland eSpace - Australia
Resumo:
Criticism of religiously motivated contributions to public policy debate is largely misconceived. It assumes that the mischief which constitutional separation of church and state is supposed to cure is a domination of the state by the church. This presents only one side of the story. Subservience by the church to the slate should also be avoided. The law of a liberal state is legitimate to the extent that it does not conflict with the basic moral values of its citizens. Therefore, an ongoing conversation about basic values is necessary. Allowing churches and individual believers the freedom to make distinctive 'religious' contributions to this conversation is consistent with the separation of church and state. It is an aspect of the liberal democratic state's obligation to listen to all perspectives on difficult moral issues. A close relationship between church and state, on the other hand, has the capacity to impede the conversation.
Resumo:
Quantum-state sharing is a protocol where perfect reconstruction of quantum states is achieved with incomplete or partial information in a multipartite quantum network. Quantum-state sharing allows for secure communication in a quantum network where partial information is lost or acquired by malicious parties. This protocol utilizes entanglement for the secret-state distribution and a class of quantum disentangling protocols for the state reconstruction. We demonstrate a quantum-state sharing protocol in which a tripartite entangled state is used to encode and distribute a secret state to three players. Any two of these players can collaborate to reconstruct the secret state, while individual players obtain no information. We investigate a number of quantum disentangling processes and experimentally demonstrate quantum-state reconstruction using two of these protocols. We experimentally measure a fidelity, averaged over all reconstruction permutations, of F=0.73 +/- 0.02. A result achievable only by using quantum resources.