4 resultados para Mahogany.

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper considers the economics of conserving a species with mainly non-use value, the endangered mahogany glider. Three serial surveys of Brisbane residents provide data on the knowledge of respondents about the mahogany glider. The results supply information about the attitudes of respondents to the mahogany glider, to its conservation and relevant public policies, and about variations in these factors as the knowledge of participants of the mahogany glider alters. Similarly, data are provided and analysed about the willingness to pay of respondents to conserve the mahogany glider and how it changes. Population viability analysis is applied to estimate the required habitat area for a minimum viable population of the mahogany glider to ensure at least a 95% probability of its survival for 100 years. Places are identified in Queensland where the requisite minimum area of critical habitat can be conserved. Using the survey results as a basis, the likely willingness of groups of Australians to pay for the conservation of the mahogany glider is estimated and consequently their willingness to pay for the minimum required area of its habitat. Methods for estimating the cost of protecting this habitat are outlined. Australia-wide benefits are estimated to exceed the costs. Establishing a national park containing the minimum viable population of the mahogany glider is an appealing management option. This would also be beneficial in conserving other endangered wildlife species and ecosystems. Therefore, additional economic benefits to those estimated on account of the mahogany glider itself can be obtained. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The theoretical impacts of anthropogenic habitat degradation on genetic resources have been well articulated. Here we use a simulation approach to assess the magnitude of expected genetic change, and review 31 studies of 23 neotropical tree species to assess whether empirical case studies conform to theory. Major differences in the sensitivity of measures to detect the genetic health of degraded populations were obvious. Most studies employing genetic diversity (nine out of 13) found no significant consequences, yet most that assessed progeny inbreeding (six out of eight), reproductive output (seven out of 10) and fitness (all six) highlighted significant impacts. These observations are in line with theory, where inbreeding is observed immediately following impact, but genetic diversity is lost slowly over subsequent generations, which for trees may take decades. Studies also highlight the ecological, not just genetic, consequences of habitat degradation that can cause reduced seed set and progeny fitness. Unexpectedly, two studies examining pollen flow using paternity analysis highlight an extensive network of gene flow at smaller spatial scales (less than 10 km). Gene flow can thus mitigate against loss of genetic diversity and assist in long-term population viability, even in degraded landscapes. Unfortunately, the surveyed studies were too few and heterogeneous to examine concepts of population size thresholds and genetic resilience in relation to life history. Future suggested research priorities include undertaking integrated studies on a range of species in the same landscapes; better documentation of the extent and duration of impact; and most importantly, combining neutral marker, pollination dynamics, ecological consequences, and progeny fitness assessment within single studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fine-scale spatial genetic structure (SGS) in natural tree populations is largely a result of restricted pollen and seed dispersal. Understanding the link between limitations to dispersal in gene vectors and SGS is of key interest to biologists and the availability of highly variable molecular markers has facilitated fine-scale analysis of populations. However, estimation of SGS may depend strongly on the type of genetic marker and sampling strategy (of both loci and individuals). To explore sampling limits, we created a model population with simulated distributions of dominant and codominant alleles, resulting from natural regeneration with restricted gene flow. SGS estimates from subsamples (simulating collection and analysis with amplified fragment length polymorphism (AFLP) and microsatellite markers) were correlated with the 'real' estimate (from the full model population). For both marker types, sampling ranges were evident, with lower limits below which estimation was poorly correlated and upper limits above which sampling became inefficient. Lower limits (correlation of 0.9) were 100 individuals, 10 loci for microsatellites and 150 individuals, 100 loci for AFLPs. Upper limits were 200 individuals, five loci for microsatellites and 200 individuals, 100 loci for AFLPs. The limits indicated by simulation were compared with data sets from real species. Instances where sampling effort had been either insufficient or inefficient were identified. The model results should form practical boundaries for studies aiming to detect SGS. However, greater sample sizes will be required in cases where SGS is weaker than for our simulated population, for example, in species with effective pollen/seed dispersal mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neotropical pioneer species Vochysia ferruginea is locally important for timber and is being increasingly exploited. The sustainable utilisation of this species would benefit from an understanding of the level and partitioning of genetic diversity within remnant and secondary regrowth populations. We used data from total genome (amplified fragment length polymorphism, AFLP) and chloroplast genome markers to assay diversity levels within seven Costa Rican populations. Significant chloroplast differentiation between Atlantic and Pacific watersheds was observed, suggesting divergent historical origins for these populations. Contemporary gene flow, though extensive, is geographically constrained and a clear pattern of isolation by distance was detectable when an inter-population distance representing gene flow around the central Costa Rican mountain range was used. Overall population differentiation was low (F-ST = 0.15) and within-population diversity high, though variable (H-s=0.16-0.32), which fits with the overall pattern of population genetic structure expected for a widespread, outcrossed tropical tree. However genetic diversity was significantly lower and differentiation higher for recently colonised and disturbed populations compared to that at more established sites. Such a pattern seems indicative of a pioneer species undergoing repeated cycles of colonisation and succession.