5 resultados para Magnification Factors, Metodo Alpha, torsione
em University of Queensland eSpace - Australia
Resumo:
This review paper compares the differences in prevalence, and environmental and genetic risk factors for Parkinson's disease between Chinese and Caucasian subjects. Comparison of age-specific prevalence between Chinese people and Caucasians suggests that the prevalence is lower in the Chinese ( at least in the past), although the prevalence rate in China appears to be rising. Distinctions in environmental risk factors and genetic factors are discussed. The difference in prevalence may be due to distinctions in environmental and genetic risk factors as well as the complex interaction between these environmental and genetic factors, although discrepancies in methodology for prevalence surveys can also be an explanation. Copyright (C) 2004 S. Karger AG, Basel.
Resumo:
Serine/threonine protein kinase AMP-activated protein kinase (AMPK) is a key metabolic stress-responsive factor that promotes the adaptation of cells to their microenvironment. Elevated concentrations of intracellular AMP, caused by metabolic stress, are known to activate AMPK by phosphorylation of the catalytic subunit. Recently, the tumor suppressor serine/threonine protein kinase LKB1 was identified as an upstream kinases, AMPKKs. In the current study, we found that stimulation with growth factors also caused AMPK-alpha subunit phosphorylation. Interestingly, even an LKB1-nonexpressing cancer cell line, HeLa, exhibited growth factor-stimulated AMPK-alpha subunit phosphorylation, suggesting the presence of an LKB1-independent pathway for AMPK-alpha subunit phosphorylation. In the human pancreatic cancer cell line PANC-1, AMPK-alpha subunit phosphorylation promoted by IGF-I was suppressed by antisense ataxia telangiectasia mutated (ATM) expression. We found that IGF-1 also induced AMPK-alpha subunit phosphorylation in the human normal fibroblast TIG103 cell line, but failed to do so in a human fibroblast AT2-KY cell line lacking ATM. Immunoprecipitates of ATM collected from IGF-1-stimulated cells also caused the phosphorylation of the AMPK-alpha subunit in vitro. IGF-1-stimulated ATM phosphorylation at both threonine and tyrosine residues, and our results demonstrated that the phosphorylation of tyrosine in the ATM molecule is important for AMPK-alpha subunit phosphorylation during IGF-1 signaling. These results suggest that IGF-1 induces AMPK-alpha subunit phosphorylation via an ATM-dependent and LKB1-independent pathway. (C) 2004 Elsevier Inc. All rights reserved.
Role of dietary factors in the development of basal cell cancer and squamous cell cancer of the skin
Resumo:
The role of dietary factors in the development of skin cancer has been investigated for many years; however, the results of epidemiologic studies have not been systematically reviewed. This article reviews human studies of basal cell cancer (BCC) and squamous cell cancer (SCC) and includes all studies identified in the published scientific literature investigating dietary exposure to fats, retinol, carotenoids, vitamin E, vitamin Q and selenium. A total of 26 studies were critically reviewed according to study design and quality of the epidemiologic evidence. Overall, the evidence suggests a positive relationship between fat intake and BCC and SCC, an inconsistent association for retinol, and little relation between beta-carotene and BCC or SCC development. There is insufficient evidence on which to make a judgment about an association of other carotenoids with skin cancer. The evidence for associations between vitamin E, vitamin C, and selenium and both BCC and SCC is weak. Many of the existing studies contain limitations, however, and further well-designed and implemented studies are required to clarify the role of diet in skin cancer. Additionally, the role of other dietary factors, such as flavonoids and other polyphenols, which have been implicated in skin cancer development in animal models, needs to be investigated.
Resumo:
Peroxisome proliferator-activated receptors are ligand-activated transcription factors with a potential role in cancer. We investigated peroxisome proliferator-activated receptor alpha expression in breast cancer cell lines and showed a relationship between mean peroxisome proliferator-activated receptor alpha and estrogen receptor alpha mRNA levels in estrogen receptor alpha positive breast cancer cells. Transfection of estrogen receptor alpha into the estrogen receptor alpha negative cell line, MDA-MB-231 decreased peroxisome proliferator-activated receptor a mRNA and conversely inhibition of estrogen receptor alpha by ICI-182 780 in estrogen receptor a positive, MCF-7 cells increased peroxisome proliferator-activated receptor a mRNA levels. Estrogen receptor alpha levels can be modulated by histone deacetylase inhibitors and such agents are in clinical trials for cancer treatment. We found the histone deacetylase inhibitor, sodium butyrate, increased peroxisome proliferator-activated receptor alpha mRNA levels within 4 h of treatment. Peroxisome proliferator-activated receptor a modulation was independent of estrogen receptor alpha, as a similar increase was observed in the estrogen receptor a negative MDA-MB-231 cells. To further investigate the relationship between sodium butyrate and peroxisome proliferator-activated receptor alpha expression, we created an MCF-7 cell line that conditionally over-expresses human peroxisome proliferator-activated receptor alpha. Over-expression of the peroxisome proliferator-activated receptor protected MCF-7 cells from sodium butyrate-mediated inhibition of proliferation and attenuated sodium butyrate-mediated induction of histone deacetylase 3 mRNA, indicating that elevated levels of peroxisome proliferator-activated receptor alpha may reduce the sensitivity of cells to histone deacetylase inhibitors. The estrogen receptor alpha dependence of peroxisome proliferator-activated receptor alpha levels may be significant since estrogen receptor alpha negative breast cancer cells are associated with a more aggressive phenotype. Our studies also suggest that peroxisome proliferator-activated receptor alpha levels may be a marker of breast cancer cell sensitivity to histone deacetylase inhibitors. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The chicken ovalbumin upstream promoter-transcription factors ( COUP-TFs) are orphan members of the nuclear hormone receptor ( NR) superfamily. COUP-TFs are involved in organogenesis and neurogenesis. However, their role in skeletal muscle ( and other major mass tissues) and metabolism remains obscure. Skeletal muscle accounts for similar to 40% of total body mass and energy expenditure. Moreover, this peripheral tissue is a primary site of glucose and fatty acid utilization. We utilize small interfering RNA ( siRNA)-mediated attenuation of Coup-TfI and II ( mRNA and protein) in a skeletal muscle cell culture model to understand the regulatory role of Coup-Tfs in this energy demanding tissue. This targeted NR repression resulted in the significant attenuation of genes that regulate lipid mobilization and utilization ( including Ppar alpha, Fabp3, and Cpt-1). This was coupled to reduced fatty acid beta-oxidation. Additionally we observed significant attenuation of Ucp1, a gene involved in energy expenditure. Concordantly, we observed a 5-fold increase in ATP levels in cells with siRNA-mediated repression of Coup-TfI and II. Furthermore, the expression of classical liver X receptor ( LXR) target genes involved in reverse cholesterol transport ( Abca1 and Abcg1) were both significantly repressed. Moreover, we observed that repression of the Coup-Tfs ablated the activation of Abca1, and Abcg1 mRNA expression by the selective LXR agonist, T0901317. In concordance, Coup-Tf-siRNA-transfected cells were refractory to Lxr-mediated reduction of total intracellular cholesterol levels in contrast to the negative control cells. In agreement Lxr-mediated activation of the Abca1 promoter in Coup-Tf-siRNA cells was attenuated. Collectively, these data suggest a pivotal role for Coup-Tfs in the regulation of lipid utilization/cholesterol homeostasis in skeletal muscle cells and the modulation of Lxr-dependent gene regulation.