37 resultados para Magneto-aerodynamics

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cortical activity associated with voluntary movement is shifted from medial to lateral premotor areas in Parkinson's disease. This occurs bilaterally, even for unilateral movements. We have used both EEG and MEG to further investigate medial and lateral premotor activity in patients with hemi-Parkinson's disease, in whom basal ganglia impairment is most pronounced in one hemisphere. The CNV, recorded from 21 scalp positions in a Go/NoGo task, was maximal over central medial regions in control subjects. For hemi-Parkinson's disease subjects, activity was shifted more frontally, reduced in the midline and lateralised towards the side of greatest basal ganglia impairment. With 143 channel whole-scalp magneto encephalography (MEG) we are further examining asymmetries in supplementary motor/premotor cortical activity prior to self-paced voluntary movement. In preliminary results, one hemi-Parkinson's disease patient with predominantly left-side symptoms showed strong medial activity consistent with a dominant source in the left supplementary motor area (SMA). Three patients showed little medial activity, but early bilateral sources within lateral premotor cortex. Results suggest greater involvement of lateral premotor rather than the SMA prior to movement in Parkinson's disease and provide evidence for asymmetric function of the SMA in hemi- Parkinson's disease, with reduced activity on the side of greatest basal ganglia deficit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Equilibrium Flux Method [1] is a kinetic theory based finite volume method for calculating the flow of a compressible ideal gas. It is shown here that, in effect, the method solves the Euler equations with added pseudo-dissipative terms and that it is a natural upwinding scheme. The method can be easily modified so that the flow of a chemically reacting gas mixture can be calculated. Results from the method for a one-dimensional non-equilibrium reacting flow are shown to agree well with a conventional continuum solution. Results are also presented for the calculation of a plane two-dimensional flow, at hypersonic speed, of a dissociating gas around a blunt-nosed body.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Comparisons are made between experimental measurements and numerical simulations of ionizing flows generated in a superorbital facility. Nitrogen, with a freestream velocity of around 10 km/s, was passed over a cylindrical model, and images were recorded using two-wavelength holographic interferometry. The resulting density, electron concentration, and temperature maps were compared with numerical simulations from the Langley Research Center aerothermodynamic upwind relaxation algorithm. The results showed generally good agreement in shock location and density distributions. Some discrepancies were observed for the electron concentration, possibly, because simulations were of a two-dimensional flow, whereas the experiments were likely to have small three-dimensional effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Force measurement in hypervelocity expansion tubes is not possible using conventional techniques. The stress wave force balance technique can be applied in expansion tubes to measure forces despite the short test times involved. This paper presents a new calibration technique for multiple-component stress wave force balances where an impulse response created using a load distribution is required and no orthogonal surfaces on the model exist.. This new technique relies on the tensorial superposition of single-component impulse responses analogous to the vectorial superposition of the calibration loads. The example presented here is that of a scale model of the Mars Pathfinder, but the technique is applicable to any geometry and may be useful for cases where orthogonal loads cannot be applied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magneto-transport measurements of the 2D hole system (2DHS) in p-type Si-Si1-xGex heterostructures identify the integer quantum Hall effect (IQHE) at dominantly odd-integer filling factors v and two low-temperature insulating phases (IPs) at v = 1.5 and v less than or similar to 0.5, with re-entrance to the quantum Hall effect at v = 1. The temperature dependence, current-voltage characteristics, and tilted field and illumination responses of the IP at v = 1.5 indicate that the important physics is associated with an energy degeneracy of adjacent Landau levels of opposite spin, which provides a basis for consideration of an intrinsic, many-body origin.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The performance of the Oxford University Gun Tunnel has been estimated using a quasi-one-dimensional simulation of the facility gas dynamics. The modelling of the actual facility area variations so as to adequately simulate both shock reflection and flow discharge processes has been considered in some detail. Test gas stagnation pressure and temperature histories are compared with measurements at two different operating conditions - one with nitrogen and the other with carbon dioxide as the test gas. It is demonstrated that both the simulated pressures and temperatures are typically within 3% of the experimental measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An acceleration compensated transducer was developed to enable the direct measurement of skin friction in hypervelocity impulse facilities. The gauge incorporated a measurement and acceleration element that employed direct shear of a piezoelectric ceramic. The design integrated techniques to maximize rise time and shear response while minimizing the affects of acceleration, pressure, heat transfer, and electrical interference. The arrangement resulted in a transducer natural frequency near 40 kHz. The transducer was calibrated for shear and acceleration in separate bench tests and was calibrated for pressure within an impulse facility. Uncertainty analyses identified only small experimental errors in the shear and acceleration calibration techniques. Although significant errors were revealed in the method of pressure calibration, total skin-friction measurement errors as low as +/-7-12% were established. The transducer was successfully utilized in a shock tunnel, and sample measurements are presented for flow conditions that simulate a flight Mach number near 8.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper presents methods for measurement of convective heat transfer distributions in a cold flow, supersonic blowdown wind tunnel. The techniques involve use of the difference between model surface temperature and adiabatic wall temperature as the driving temperature difference for heat transfer and no active heating or cooling of the test gas or model is required. Thermochromic liquid crystals are used for surface temperature indication and results presented from experiments in a Mach 3 flow indicate that measurements of the surface heat transfer distribution under swept shock wave boundary layer interactions can be made. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments to investigate the transition process in hypervelocity boundary layers were performed in the T4 free-piston shock tunnel. An array of thin-film heat-transfer gauges was used to detect the location and extent of the transitional region on a 1500 mm long x 120 turn wide flat plate, which formed one of the walls of a duct. The experiments were performed in a Mach 6 flow of air with 6- and 12-MJ/kg nozzle-supply enthalpies at unit Reynolds numbers ranging from 1.6 x 10(6) to 4.9 x 10(6) m(-1). The results show that the characteristics typical of transition taking place through the initiation, growth, and merger of turbulent spots are evident in the heat-transfer signals. A 2-mm-high excrescence located 440 turn from the leading edge was found to be capable of generating a turbulent wedge within an otherwise laminar boundary layer at a unit Reynolds number of 2.6 x 10(6) m(-1) at the 6-MJ/kg condition. A tripping strip, located 100 mm from the leading edge and consisting of a line 37 teeth of 2 rum height equally spaced and spanning the test surface, was also found to be capable of advancing the transition location at the same condition and at the higher enthalpy condition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a new theory of hypersonic blunt-nose shock standoff, based on a compressibility coordinate transformation for inviscid flow. It embraces a wide range of nonequilibrium shock-layer chemistry and gas mixtures including ionization and freestream dissociation. An extended binary scaling property of the analysis is also demonstrated. Specific application is made here to the family of arbitrarily diluted dissociating diatomic gases, with parametric study results presented for the scaled shock standoff distance as a function of an appropriate blunt-nose region Damkohler number. Comparisons with other theories and data in the case of nitrogen are also given and discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cold atoms in optical potentials provide an ideal test bed to explore quantum nonlinear dynamics. Atoms are prepared in a magneto-optic trap or as a dilute Bose-Einstein condensate and subjected to a far detuned optical standing wave that is modulated. They exhibit a wide range of dynamics, some of which can be explained by classical theory while other aspects show the underlying quantum nature of the system. The atoms have a mixed phase space containing regions of regular motion which appear as distinct peaks in the atomic momentum distribution embedded in a sea of chaos. The action of the atoms is of the order of Planck's constant, making quantum effects significant. This tutorial presents a detailed description of experiments measuring the evolution of atoms in time-dependent optical potentials. Experimental methods are developed providing means for the observation and selective loading of regions of regular motion. The dependence of the atomic dynamics on the system parameters is explored and distinct changes in the atomic momentum distribution are observed which are explained by the applicable quantum and classical theory. The observation of a bifurcation sequence is reported and explained using classical perturbation theory. Experimental methods for the accurate control of the momentum of an ensemble of atoms are developed. They use phase space resonances and chaotic transients providing novel ensemble atomic beamsplitters. The divergence between quantum and classical nonlinear dynamics is manifest in the experimental observation of dynamical tunnelling. It involves no potential barrier. However a constant of motion other than energy still forbids classically this quantum allowed motion. Atoms coherently tunnel back and forth between their initial state of oscillatory motion and the state 180 out of phase with the initial state.