13 resultados para Magmatism

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Jiaodong gold province is the largest gold repository in China. Both mineralization and granitoid hosts are spatially related to the crustal-scale Tan-Lu strike-slip fault system, which developed along the Mesozoic continental margin in eastern China. A series of Ar-40/Ar-39 laser incremental heating analyses of hydrothermal sericite/muscovite from three major gold deposits (Jiaojia, Xincheng, and Wangershan) and igneous biotite from the granodiorite hosts were performed to establish a possible temporal link between gold mineralization, magmatism, and movement along the Tan-Lu fault zone. Magmatic biotite crystals yield well-defined and concordant plateau ages between 124.5+/-0.4 Ma and 124.0+/-0.4 Ma (2sigma), whereas sericite and muscovite samples (a total of 30 single separates) give reproducible plateau ages ranging from 121.0+/-0.4 Ma to 119.2+/-0.2 Ma (2sigma). An integration of our Ar-40/Ar-39 results with age data from other major gold deposits in Jiaodong demonstrates that widespread gold mineralization occurred contemporaneously during a 2-3-m.yr. period. Most gold deposits show intimate spatial associations with abundant mafic to intermediate dikes. The mafic dikes have K-Ar ages of 123.5-119.6 Ma, in excellent agreement with those of the gold deposits. These newly obtained Ar-40/Ar-39 ages, in combination with other independent geological and geochronological data on granodioritic intrusions (130-126 Ma), volcanic rocks (1243.6-114.7 Ma), and deformed rocks within strike-slip faults (132-120 Ma) in Jiaodong or adjacent areas, also support the idea that gold mineralization postdated the granodioritic magmatism but was contemporaneous with mafic magmatism and volcanism, all controlled by the transtensional motion along the Tan-Lu fault in the Early Cretaceous.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first terrestrial Pb-isotope paradox refers to the fact that on average, rocks from the Earth's surface (i.e. the accessible Earth) plot significantly to the right of the meteorite isochron in a common Pb-isotope diagram. The Earth as a whole, however, should plot close to the meteorite isochron, implying the existence of at least one terrestrial reservoir that plots to the left of the meteorite isochron. The core and the lower continental crust are the two candidates that have been widely discussed in the past. Here we propose that subducted oceanic crust and associated continental sediment stored as garnetite slabs in the mantle Transition Zone or mid-lower mantle are an additional potential reservoir that requires consideration. We present evidence from the literature that indicates that neither the core nor the lower crust contains sufficient unradiogenic Pb to balance the accessible Earth. Of all mantle magmas, only rare alkaline melts plot significantly to the left of the meteorite isochron. We interpret these melts to be derived from the missing mantle reservoir that plots to the left of the meteorite isochron but, significantly, above the mid-ocean ridge basalt (MORB)-source mantle evolution line. Our solution to the paradox predicts the bulk silicate Earth to be more radiogenic in Pb-207/Pb-204 than present-day MORB-source mantle, which opens the possibility that undegassed primitive mantle might be the source of certain ocean island basalts (OIB). Further implications for mantle dynamics and oceanic magmatism are discussed based on a previously justified proposal that lamproites and associated rocks could derive from the Transition Zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new model for Archaean granitoid magmatism is presented which reconciles the most important geochemical similarities and differences between tonalite-trondhjemite-granodiorite (TTG) and potassic granitoids. Trace element abundances reveal a strong arc magmatism signature in all studied granitoids from Barberton Mountain Land. Characteristic features include HFSE depletion as well as distinct enrichment peaks of fluid-sensitive trace elements such as Pb in N-MORB normalisation, clearly indicating that all studied granitoids are derived from refertilised mantle above subduction zones. We envisage hydrous basaltic (s.l.) melts as parental liquids, which underwent extensive fractional crystallisation. Distinctive residual cumulates evolved depending on initial water content. High-H2O melts crystallised garnet/amphibole together with pyroxenes and minor plagioclase, but no olivine. This fractionation path ultimately led to TTG-like melts. Less hydrous basaltic melts also crystallised garnet/amphibole, but the lower compatible element content indicates that olivine was also a liquidus phase. Pronounced negative Eu-anomalies of the granitic melts, correlating with Na, Ca and Al, indicate plagioclase to be of major importance. In the context of our model, the post-Archaean disappearance of TTG and concomitant preponderance of granites (s.l.), therefore, is explained with secular decrease of aqueous fluid transport into subduction zones and/or efficiency of deep fluid release from slabs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ELA-ICP-MS U-Pb zircon geochronology has been used to show that the porphyritic intrusions related to the formation of the Bajo de la Alumbrera porphyry Cu-Au deposit, NW Argentina, are cogenetic with stratigraphically well-constrained volcanic and volcaniclastic rocks of the Late Miocene Farallon Negro Volcanic Complex. Zircon geochronology for intrusions in this deposit and the host volcanic sequence show that multiple mineralized porphyries were emplaced in a volcanic complex that developed over 1.5 million years. Volcanism occurred in a multivent volcanic complex in a siliciclastic intermontane basin. The complex evolved from early mafic-intermediate effusive phases to a later silicic explosive phase associated with mafic intrusions. Zircons from the basal mafic-intermediate lavas have ages that range from 8.46 +/- 0.14 to 7.94 +/- 0.27 Ma. Regionally extensive silicic explosive volcanism occurred at similar to8.0 Ma (8.05 +/- 0.13 and 7.96 +/- 0.11 Ma), which is co-temporal with intrusion of the earliest mineralized porphyries at Bajo de la Alumbrera (8.02 +/- 0.14 and 7.98 +/- 0.14 Ma). Regional uplift and erosion followed during which the magmatic-hydrothermal system was probably unroofed. Shortly thereafter, dacitic lava domes were extruded (7.95 +/- 0.17 Ma) and rhyolitic diatremes (7.79 +/- 0.13 Ma) deposited thick tuff blankets, across the region. Emplacement of large intermediate composition stocks occurred at 7.37 +/- 0.22 Ma, shortly before renewed magmatism occurred at Bajo de la Alumbrera (7.10 +/- 0.07 Ma). The latest porphyry intrusive event is temporally associated with new ore-bearing magmatic-hydrothermal fluids. Other dacitic intrusions are associated with subeconomic deposits that formed synchronously with the mineralized porphyries at Bajo de la Alumbrera. However, their emplacement continued (from 7.10 +/- 0.06 to 6.93 +/- 0.07 Ma) after the final intrusion at Bajo de al Alumbrera. Regional volcanism had ceased by 6.8 Ma (6.92 +/- 0.07 Ma). The brief history of the volcanic complex hosting the Bajo de la Alumbrera Cu-Au deposit differs from that of other Andean provinces hosting porphyry deposits. For example, at the El Salvador porphyry copper district in Chile, magmatism related to Cu mineralization was episodic in regional igneous activity that occurred over tens of millions of years. Bajo de la Alumbrera resulted from the superposition of multiple porphyry-related hydrothermal systems, temporally separated by a million years. It appears that the metal budget in porphyry ore deposits is not simply a function of their longevity and/or the superposition of multiple porphyry systems. Nor is it a function of the duration of the associated cycle of magmatism. Instead, the timing of processes operating in the parental magma body is the controlling factor in the formation of a fertile porphyry-related ore system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New K-Ar and Ar-40/Ar-39 data of tholeiitic and alkaline dike swarms from the onshore basement of the Santos Basin (SE Brazil) reveal Mesozoic and Tertiary magmatic pulses. The tholeiitic rocks (basalt, dolerite, and microgabbro) display high TiO2 contents (average 3.65 wt%) and comprise two magmatic groups. The NW-oriented samples of Group A have (La/Yb)N ratios between 15 and 32.3 and range in age from 192.9 +/- 2.2 to 160.9 +/- 1.9 Ma. The NNW-NNE Group B samples, with (La/Yb)(N) ratios between 7 and 16, range from 148.3 +/- 3 to 133.9 +/- 0.5 Ma. The alkaline rocks (syenite, trachyte, phonolite, alkaline basalts, and lamprophyre) display intermediate-K contents and comprise dikes, plugs, and stocks. Ages of approximately 82 Ma were obtained for the lamprophyre dikes, 70 Ma for the syenite plutons, and 64-59 Ma for felsic dikes. Because Jurassic-Early Cretaceous basic dikes have not been reported in SE Brazil, we might speculate that, during the emplacement of Group A dikes, extensional stresses were active in the region before the opening of the south Atlantic Ocean and coeval with the Karoo magmatism described in South Africa. Group B dikes yield ages compatible with those obtained for Serra Geral and Ponta Grossa magmatism in the Parana Basin and are directly related to the breakup of western Gondwana. Alkaline magmatism is associated with several tectonic episodes that postdate the opening of the Atlantic Ocean and related to the upwelling of the Trindade plume and the generation of Tertiary basins southeast of Brazil. In the studied region, alkaline magmatism can be subdivided in two episodes: the first one represented by lamprophyre dykes of approximately 82 Ma and the second comprised of felsic alkaline stocks of approximately 70 Ma and associated dikes ranging from 64 to 59 Ma. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

U-Pb zircon ages from the exposed Sask craton are 2450-3100 Ma, from the Peter Lake Domain 2575-2640 Ma, and from rocks of the Trans-Hudson orogen 1840-1880 Ma. U-Pb monazite and zircon ages of post-orogenic pegmatites and aplites are 1770-1800 Ma. Common Pb and Sm-Nd isotopic compositions of post-orogenic intrusions, as probes of crust beneath the orogen, were compared to Sask craton rocks and ca. 1850 Ma orogenic rocks to infer the origin and subsurface distribution of the Sask craton within the internides of the Trans-Hudson orogen. Results show that post-orogenic intrusions within most of the Glennie Domain and Hanson Lake block were derived, at least in part, from Archean source materials, demonstrating that the Sask craton lies beneath Paleoproterozoic orogenic rocks present at the surface. In contrast, common Pb and Sm-Nd isotopic compositions from pegmatites and aplites of the La Ronge Domain are essentially identical with those of the Paleoproterozoic orogenic rocks into which they are intruded, indicating derivation by partial melting of similar rocks. Thus, if the Sask craton extended to the west beneath the La Ronge Domain, it was beneath the zone of melting that produced the post-orogenic intrusions, making it unlikely that the Sask craton is a detached part of the Hearne craton. Many samples from the Sask craton have elevated Pb-208/Pb-204 ratios, unlike Superior craton or Hearne craton rocks, suggesting that the Sask craton was derived from an exotic source, such as the Wyoming craton, which shares similar elevated Pb-208/Pb-204 ratios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Jiaodong gold province, the largest gold-producing district in China, is located in the jiaodong peninsula at the eastern margin of the North China craton and bounded by the continental scale Tan-Lu fault, 40 kin to the west. Previous geochronological studies suggest that pervasive gold deposition took place in the western part of the province between 122 and 119 Ma. Here we report high-quality Ar-40/Ar-39 ages of the Pengjiakuang and Rushan deposits from the eastern part of the jiaodong gold province, placing additional chronological constraints on the timing of regional mineralization. Seven sericite grains extracted from auriferous alteration assemblages at the Pengiiakuang deposit yielded well-defined plateau ages between 120.9 +/- 0.4 and 119.1 +/- 0.2 Ma (2 sigma). Three separates of igneous biotite from a sample of the Queshan gneissic granite, adjacent to the Pengjiakuang deposit, gave reproducible plateau ages of 124.6 +/- 0.6 to 123.9 +/- 0.4 Ma (2 sigma). Six sericite separates front two samples in the Rushan deposit yielded Ar-40/Ar-39 plateau ages at 109.3 +/- 0.3 to 107.7 +/- 0.5 Ma (2 sigma), whereas biotite from the Kunyushan monzogranite that hosts the Rushan deposit had plateau ages ranging from 129.0 +/- 0.6 to 126.9 +/- 0.6 Ma (3 separates front one sample). The apparent age gap between hydrothermal sericite and magmtic biotite from both deposits, together with the similar argon closure temperatures for these mica minerals, suggest that gold mineralization had no direct relationship to the granitoid magmatism. Instead, gold deposition coincided with the emplacement of mafic to intermediate dikes widespread in the jiaodong gold province, which have been dated at ca. 122 to 119 Ma and, less commonly, at 110 to 102 Ma. The new Ar-40/Ar-39 ages from the eastern jiaodong peninsula, when combined with published data from the western part suggest that gold mineralization was broadly contemporaneous throughout the district. The Early Cretaceous gold mineralization also is widely developed in four other major gold districts along the Tan-Lu fault. The temporal and spatial correlation of these gold deposits with mafic to intermediate dikes commonly found in most mineralized areas, the presence of well-documented metamorphic core complexes and half-graben basins along the Tan-Lu fault, and voluminous basalts therein, suggest that the Early Cretaceous was an important period of lithospheric extension, possibly caused by the late Mesozoic lithospheric thinning beneath the eastern block of the North China craton. Lithospheric thinning and extension could have resulted in abnormally high heat and fluid fluxes necessary for large-scaled gold mineralization.