44 resultados para Machine Translation (MT)

em University of Queensland eSpace - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present an approach to parsing rehive clauses in Arabic in the tradition of the Paninian Grammar Frumework/2] which leads to deriving U common logicul form for equivalent sentences. Particular attention is paid to the analysis of resumptive pronouns in the retrieval of syntuctico-semantic relationships. The analysis arises from the development of a lexicalised dependency grammar for Arabic that has application for machine translation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic binary translation is the process of translating, modifying and rewriting executable (binary) code from one machine to another at run-time. This process of low-level re-engineering consists of a reverse engineering phase followed by a forward engineering phase. UQDBT, the University of Queensland Dynamic Binary Translator, is a machine-adaptable translator. Adaptability is provided through the specification of properties of machines and their instruction sets, allowing the support of different pairs of source and target machines. Most binary translators are closely bound to a pair of machines, making analyses and code hard to reuse. Like most virtual machines, UQDBT performs generic optimizations that apply to a variety of machines. Frequently executed code is translated to native code by the use of edge weight instrumentation, which makes UQDBT converge more quickly than systems based on instruction speculation. In this paper, we describe the architecture and run-time feedback optimizations performed by the UQDBT system, and provide results obtained in the x86 and SPARC® platforms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Invasive vertebrate pests together with overabundant native species cause significant economic and environmental damage in the Australian rangelands. Access to artificial watering points, created for the pastoral industry, has been a major factor in the spread and survival of these pests. Existing methods of controlling watering points are mechanical and cannot discriminate between target species. This paper describes an intelligent system of controlling watering points based on machine vision technology. Initial test results clearly demonstrate proof of concept for machine vision in this application. These initial experiments were carried out as part of a 3-year project using machine vision software to manage all large vertebrates in the Australian rangelands. Concurrent work is testing the use of automated gates and innovative laneway and enclosure design. The system will have application in any habitat throughout the world where a resource is limited and can be enclosed for the management of livestock or wildlife.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leadlight windows with stained glass feature panes and timber muntins over french doors with matching leadlight sidelights.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interior view showing fireplace and mezzanine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hallway off main entry to house.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arched head leadlight and casement windows with stained glass feature panes and timber muntins. View through window from interior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arched head leadlight window with stained glass feature panes and timber muntins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Timber framing and roof skylight detail inside garage-studio.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mineralogical, hydrochemical and S isotope data were used to constrain hydrogeochemical processes that produce acid mine drainage from sulfidic waste at the historic Mount Morgan Au–Cu mine, and the factors controlling the concentration of SO4 and environmentally hazardous metals in the nearby Dee River in Queensland, Australia. Some highly contaminated acid waters, with metal contents up to hundreds of orders of magnitude greater than the Australia–New Zealand environmental standards, by-pass the water management system at the site and drain into the adjacent Dee River. Mine drainage precipitates at Mt. Morgan were classified into 4 major groups and were identified as hydrous sulfates and hydroxides of Fe and Al with various contents of other metals. These minerals contain adsorbed or mineralogically bound metals that are released into the water system after rainfall events. Sulfate in open pit water and collection sumps generally has a narrow range of S isotope compositions (δ34S = 1.8–3.7‰) that is comparable to the orebody sulfides and makes S isotopes useful for tracing SO4 back to its source. The higher δ34S values for No. 2 Mill Diesel sump may be attributed to a difference in the source. Dissolved SO4 in the river above the mine influence and 20 km downstream show distinctive heavier isotope compositions (δ34S = 5.4–6.8‰). The Dee River downstream of the mine is enriched in 34S (δ34S = 2.8–5.4‰) compared with mine drainage possibly as a result of bacterial SO4 reduction in the weir pools, and in the water bodies within the river channel. The SO4 and metals attenuate downstream by a combination of dilution with the receiving waters, SO4 reduction, and the precipitation of Fe and Al sulfates and hydroxides. It is suggested here that in subtropical Queensland, with distinct wet and dry seasons, temporary reducing environments in the river play an important role in S isotope systematics