6 resultados para MULTIPLE-MYELOMA

em University of Queensland eSpace - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The poor response to immunotherapy in patients with multiple myeloma (MM) indicates that a better understanding of any defects in the immune response in these patients is required before effective therapeutic strategies can be developed. Recently we reported that high potency (CMRF44(+)) dendritic cells (DC) in the peripheral blood of patients with MM failed to significantly up-regulate the expression of the B7 co-stimulatory molecules, CD80 and CD86, in response to an appropriate signal from soluble trimeric human CD40 ligand. This defect was caused by transforming growth factor beta(1) (TGFbeta(1)) and interleukin (IL)-10, produced by malignant plasma cells, and the defect was neutralized in vitro with anti-TGFbeta(1). As this defect could impact on immunotherapeutic strategies and may be a major cause of the failure of recent trials, it was important to identify a more clinically useful agent that could correct the defect in vivo. In this study of 59 MM patients, the relative and absolute numbers of blood DC were only significantly decreased in patients with stage III disease and CD80 up-regulation was reduced in both stage I and stage III. It was demonstrated that both IL-12 and interferon-gamma neutralized the failure to stimulate CD80 up-regulation by huCD40LT in vitro. IL-12 did not cause a change in the distribution of DC subsets that were predominantly myeloid (CD11c+ and CDw123-) suggesting that there would be a predominantly T-helper cell type response. The addition of IL-12 or interferon-gamma to future immunotherapy trials involving these patients should be considered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: A new immunoassay for free light chain measurements has been reported to be useful for the diagnosis and monitoring of monoclonal light chain diseases and nonsecretory myeloma. We describe experience with and some potential pitfalls of the assay. Methods: The assay was assessed for precision, sample type and stability, recovery, and harmonization of results between two analyzers on which the reagents are used. Free-light-chain concentrations were measured in healthy individuals (to determine biological variation), patients with monoclonal gammopathy of undetermined significance, myeloma patients after autologous stem cell transplants, and patients with renal disease. Results: Analytical imprecision (CV) was 6-11% for kappa and A free-light-chain measurement and 16% for the calculated kappa/lambda ratio. Biological variation was generally insignificant compared with analytical variation. Despite the same reagent source, values were not completely harmonized between assay systems and may produce discordant free-light-chain ratios. In some patients with clinically stable myeloma, or post transplantation, or with monoclonal gammopathy of undetermined significance, free-light-chain concentration and ratio were within the population reference interval despite the presence of monoclonal intact immunoglobulin in serum. In other patients with monoclonal gammopathy of undetermined significance, values were abnormal although there was no clinical evidence of progression to multiple myeloma. Conclusions: The use of free-light-chain measurements alone cannot differentiate some groups of patients with monoclonal gammopathy from healthy individuals. As with the introduction of any new test, it is essential that more scientific data about use of this assay in different subject groups are available so that results can be interpreted with clinical certainty. (C) 2003 American Association for Clinical Chemistry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Changes in blood dendritic cell (BDC) counts (CD123(hi)BDC and CD11c(+)BDC) and expression of CD62L, CCR7, and CD49d were analyzed in healthy donors, multiple myeloma (MM), and non-Hodgkin lymphoma (NHL) patients, who received granulocyte-colony stimulating factor (G-CSF) containing peripheral blood stem cell (PBSC) mobilization protocols. Low-dose G-CSF in healthy donors (8-10 mug/ kg/d subcutaneously) and high-dose G-CSF in patients (30 mug/kg/d) increased CD123(hi)BDC (2- to 22-fold, mean 3.7 x 10(6)/ L-17.7 x 10(6)/L and 1.9 x 10(6)/L-12.0 x 10(6)/ L) in healthy donors and MM but decreased CD11c(+)BDC (2- to 10-fold, mean 5.7 x 10(6)/L-1.6 x 10(6)/L) in NHL patients, on the day of apheresis, compared with steady state. After apheresis, CD123(hi)BDC counts remained high, whereas low CD11c(+)BDC counts tended to recover in the following 2-5 days. Down-regulation of CD62L and up-regulation of CCR7 on CD123(hi)BDC were found in most healthy donors and MM patients. CD49d expression was unchanged. Thus, PBSC mobilization may change BDC counts by altering molecules necessary for BDC homing from blood into tissues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dendritic cells (DC) from distinct DC subsets are essential contributors to normal human immune responses. Despite this, reliable assays that enable DC to be counted precisely have been slow to evolve. We have now developed a new single-platform flow cytometric assay based on TruCOUN(TM) beads and the whole blood Lyse/No-Wash protocol that allows precise counting of the CD14(-) blood DC subsets: CD11c(+)CD16(-) DC, CD11c(+)CD16(+) DC, CD123(hi) DC, CD1c(+) DC and BDCA-3(+) DC. This assay requires 50 mul of whole blood; does not rely on a hematology blood analyser for the absolute DC counts; allows DC counting in EDTA samples 24 It after collection; and is suitable for cord blood and peripheral blood. The data is highly reproducible with intra-assay and inter-assay coefficients of variation less than 3% and 11%, respectively. This assay does not produce the DC-T lymphocyte conjugates that result in DC counting abnormalities in conventional gradient-density separation procedures. Using the TruCOUNT assay, we established that absolute blood DC counts reduce with age in healthy individuals. In preliminary studies, we found a significantly lower absolute blood CD11c(+)CD16(+) DC count in stage III/IV versus stage I/II breast carcinoma patients and a lower absolute blood CD123(hi) DC count in multiple myeloma patients, compared to age-matched controls. These data indicate that scientific progress in DC counting technology will lead to the global standardization of DC counting and allow clinically meaningful data to be obtained. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dendritic cell (DC) defects are an important component of immunosuppression in cancer. Here, we assessed whether cancer could affect circulating DC populations and its correlation with tumor progression. The blood DC compartment was evaluated in 136 patients with breast cancer, prostate cancer, and malignant glioma. Phenotypic, quantitative, and functional analyses were performed at various stages of disease. Patients had significantly fewer circulating myeloid (CD11c(+)) and plasmacytoid (CD123(+)) DC, and a concurrent accumulation of CD11c(-)CD123(-) immature cells that expressed high levels of HLA-DR+ immature cells (DR+IC). Although DR+IC exhibited a limited expression of markers ascribed to mature hematopoietic lineages, expression of HLA-DR, CD40, and CD86 suggested a role as antigen-presenting cells. Nevertheless, DR+IC had reduced capacity to capture antigens and elicited poor proliferation and interferon-gamma secretion by T-lymphocytes. Importantly, increased numbers of DR+IC correlated with disease status. Patients with metastatic breast cancer showed a larger number of DR+IC in the circulation than patients with local/nodal disease. Similarly, in patients with fully resected glioma, the proportion of DR+IC in the blood increased when evaluation indicated tumor recurrence. Reduction of blood DC correlating with accumulation of a population of immature cells with poor immunologic function may be associated with increased immunodeficiency observed in cancer.