32 resultados para MONOSODIUM GLUTAMATE
em University of Queensland eSpace - Australia
Resumo:
Pyrithiamine-induced thiamine deficiency (TD) is a well-established model of Wernicke's encephalopathy in which a glutamate-mediated excitotoxic mechanism may play an important role in determining selective vulnerability. In order to examine this possibility, cultured astrocytes were exposed to TD and effects on glutamate transport and metabolic function were studied. TD led to decreases in cellular levels of thiamine and thiamine diphosphate (TDP) after 24 h of treatment and decreased activities of the TDP-dependent enzymes alpha-ketoglutarate dehydrogenase and transketolase after 4 and 7 days, respectively. TD treatment for 10 days led to a reversible decrease in the uptake of [H-3]-D-aspartate, a nonmetabolizable analogue of glutamate. Kinetic analysis revealed that the uptake inhibition was caused by a 47% decrease in the V-max for uptake of [H-3]-D-aspartate, with no change in the K-m value. Immunoblotting showed that this decrease in uptake was due to an 81% downregulation of the astrocyte-specific GLAST glutamate transporter. Loss of uptake activity and GLAST protein were blocked by treatment with the protein kinase C inhibitor H7, while exposure to DCG IV, a group II metabotropic glutamate receptor (mGluR) agonist, resulted in improvement of [H-3]-D-aspartate uptake and a partial reversal of transporter downregulation. These results are consistent with our recent in vivo findings of a loss of astrocytic glutamate transporters in TD and provide evidence that TD conditions may increase phosphorylation. of GLAST, contributing to its downregulation. In addition, manipulation of group II mGluR activity may provide an important strategy in the treatment of this disorder. (C) 2003 Wiley-Liss, Inc.
Resumo:
Alzheimer's disease (AD) is the most common form of dementia, accounting for 60-70% of cases in subjects over 65 years of age. Several postulates have been put forward that relate AD neuropathology to intellectual and functional impairment. These range from free-radical-induced damage, through cholinergic dysfunction, to beta-amyloid-induced toxicity. However, therapeutic strategies aimed at improving the cognitive symptoms of patients via choline supplementation, cholinergic stimulation or beta-amyloid vaccination, have largely failed. A growing body of evidence suggests that perturbations in systems using the excitatory amino acid L-glutamate (L-Glu) may underlie the pathogenic mechanisms of (e.g.) hypoxia-ischemia, epilepsy, and chronic neurodegenerative disorders such as Huntington's disease and AD. Almost all neurons in the CNS carry the N-methyl-D-aspartate (NMDA) subtype of ionotropic L-glutamate receptors, which can mediate post-synaptic Ca2+ influx. Excitotoxicity resulting from excessive activation of NMDA receptors may enhance the localized vulnerability of neurons in a manner consistent with AD neuropathology, as a consequence of an altered regional distribution of NMDA receptor subtypes. This review discusses mechanisms for the involvement of the NMDA receptor complex and its interaction with polyamines in the pathogenesis of AD. NMDA receptor antagonists have potential for the therapeutic amelioration of AD. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: To determine whether the localization of retinal glutamate transporters is affected by retinal ischaemia and whether their ability to transport glutamate decreases with the progression of ischemic retinal and optic nerve degeneration. Methods: Retinal ischemia was induced in rats by acutely increasing the intraocular pressure (IOP, 110 mmHg/60 min). Reperfusion was permitted for periods up to 60 days post-ischemia. Functional evaluation was performed by monitoring the pupil light reflexes (PLRs) and electroretinograms (flash, flicker ERG and oscillatory potentials). Glutamate transporter localization and D-aspartate (glutamate analogue) uptake were assessed by immunohistochemistry. Results: Intense immunoreactivity for the retinal glutamate transporters (GLAST, GLT1, EAAC1 and EAAT5) was observed at all time points after the insult, despite severe retinal degeneration. D-aspartate was also normally accumulated in the ischemic retinas. Ten days post-operatively the PLR ratio (ratio = indirect/direct PLR = 34 +/- 7(.)5%) was significantly less than the pre-operative value (pre-op = 76(.)7 +/- 2 (.)6%, p < 0(.)05). However, 25 and 35 days post-operatively PLR ratios did not differ significantly from pre-operative values (44(.)4 +/- 6(.)9 and 53(.)8 +/- 9(.)6%, p > 0(.)05). Forty-five and 60 days post-operatively the PLR ratio declined again and was significantly lower than the pre-operative value (33(.)8 + 8(.)7 and 26(.)2 + 8(.)9%, p < 0(.)05). Statistical analysis revealed that all tested ERG components had significantly higher values at 32, but not at 42 and 58 days post-operatively when compared to the first time point recorded post-operatively (10 days). Conclusions: While retinal glutamate transport is compromised during an acute ischemic insult, consequent retinal recovery and degeneration are not due to a change in the excitatory amino acid transporter localization or D-aspartate (glutamate analogue) uptake. Rat retina and optic nerve are capable of spontaneous, but temporary, functional recovery after an acute ischemic insult. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Elevated extracellular concentrations of the neurotransmitter glutamate are neurotoxic and directly contribute to CNS damage as a result of ischemic pathologies. However, the main contributors to this uncontrolled rise in glutamate are still unconfirmed. It has been reported that the reversal of high-affinity glutamate transporters is a significant contributing factor. Conversely, it has also Peen observed that these transporters continue to take up glutamate, albeit at a reduced saturation concentration, under ischemic conditions. We sought to determine whether glutamate transporters continue to remove glutamate from the extracellular space under ischemic conditions by pharmacologically modulating the activity of high-affinity retinal glutamate transporters during simulated ischemia in vitro. Retinal glutamate transporter activity was significantly reduced under these ischemic conditions. The suppression of retinal glutamate transporter activity, with the protein kinase C inhibitor chelerythrine, significantly reduced ischemic glutamate uptake and enhanced retinal neurodegeneration. These findings imply a limited but protective role for retinal glutamate transporters under certain ischemic conditions, suggesting that pharmacological enhancement of high-affinity glutamate transporter activity may reduce tissue damage and loss of function resulting from toxic extracellular glutamate concentrations. (C) 2004 Wiley-Liss, Inc.
Resumo:
The homeostasis of glutamate is critical to normal brain function; deficiencies in the regulation of extracellular glutamate are thought to be a major determinant of damage in hypoxic brains. Extracellular levels of glutamate are regulated mainly by plasmalemmal glutamate transporters. We have evaluated the distribution of the glutamate transporter GLAST and two splice variants of GLT-1 in the hypoxic neonatal pig brain using this as model of neonatal humans. In response to severe hypoxic insults, we observe a rapid loss of two glial glutamate transporters from specific brain regions, such as the CA1 region of the hippocampus, but not the dentate gyrus. The spatial distribution of loss accords with patterns of damage in these brains. Conversely, we demonstrate that hypoxia evokes the expression of a splice variant of GLT-1 in neurons. We suggest that this expression may be induced in response to elevated extracellular glutamate around these neurons, and that this splice variant may represent a useful marker for direct quantification of the extent of likely neuronal damage in hypoxic brains. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Glutamate dehydrogenase (GDH; EC 1.4.1.2-1.4.1.4) catalyses in vitro the reversible amination of 2-oxoglutarate to glutamate. In vascular plants the in vivo direction(s) of the GDH reaction and hence the physiological role(s) of this enzyme remain obscure. A phylogenetic analysis identified two clearly separated groups of higher-plant GDH genes encoding either the alpha- or beta-subunit of the GDH holoenzyme. To help clarify the physiological role(s) of GDH, tobacco (Nicotiana tabacum L.) was transformed with either an antisense or sense copy of a beta-subunit gene, and transgenic plants recovered with between 0.5- and 34-times normal leaf GDH activity. This large modulation of GDH activity (shown to be via alteration of beta-subunit levels) had little effect on leaf ammonium or the leaf free amino acid pool, except that a large increase in GDH activity was associated with a significant decrease in leaf Asp (similar to 51%, P=0.0045). Similarly, plant growth and development were not affected, suggesting that a large modulation of GDH beta-subunit titre does not affect plant viability under the ideal growing conditions employed. Reduction of GDH activity and protein levels in an antisense line was associated with a large increase in transcripts of a beta-subunit gene, suggesting that the reduction in beta-subunit levels might have been due to translational inhibition. In another experiment designed to detect post-translational up-regulation of GDH activity, GDH over-expressing plants were subjected to prolonged dark-stress. GDH activity increased, but this was found to be due more likely to resistance of the GDH protein to stress-induced proteolysis, rather than to post-translational up-regulation.
Resumo:
Serotonin (5-hydroxytryptamine, 5-HT) is an amine neurotransmitter derived from tryptophan and is important in brain systems regulating mood, emotional behavior, and sleep. Selective serotonin reuptake inhibitor (SSRI) drugs are used to treat disorders such as depression, stress, eating disorders, autism, and schizophrenia. It is thought that these drugs act to prolong the action of 5-HT by blocking reuptake. This may lead to decreased 5-HT content in the nerve fibers themselves; however, this has not previously been directly demonstrated. We have studied the effects of administration of two drugs, imipramine and citalopram, on levels of 5-HT in nerve fibers in the murine brain. Quantitative analysis of the areal density of 5-HT fibers throughout the brain was performed using ImageJ software. While a high density of fibers was observed in mid- and hind-brain regions and areas such as thalamus and hypothalamus, densities were far lower in areas such as cortex, where SSRIs might be thought to exert their actions. As anticipated, imipramine and citalopram produced a decline in 5-HT levels in nerve fibers, but the result was not uniform. Areas such as inferior colliculus showed significant reduction whereas little, if any, change was observed in the adjacent superior colliculus. The reason for, and significance of, this regionality is unclear. It has been proposed that serotonin effects in the brain might be linked to changes in glutamatergic transmission. Extracellular glutamate levels are regulated primarily by glial glutamate transporters. Qualitative evaluation of glutamate transporter immunolabeling in cortex of control and drug-treated mice revealed no discernable difference in intensity of glutamate transporter immunoreactivity. These data suggest that changes in intracellular and extracellular levels of serotonin do not cause concomitant changes in astroglial glutamate transporter expression, and thus cannot represent a mechanism for the delayed efficacy of antidepressants when administered clinically. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Neurodegenerative diseases such as Huntington's disease, ischemia, and Alzheimer's disease (AD) are major causes of death. Recently, metabotropic glutamate receptors (mGluRs), a group of seven-transmembrane-domain proteins that couple to G-proteins, have become of interest for studies of pathogenesis. Group I mGluRs control the levels of second messengers such as inositol 1,4,5-triphosphate (IP3) Cal(2+) ions and cAMP. They elicit the release of arachidonic acid via intracellular Ca2+ mobilization from intracellular stores such as mitochondria and endoplasmic reticulum. This facilitates the release of glutamate and could trigger the formation of neurofibrillary tangles, a pathological hallmark of AD. mGluRs regulate neuronal injury and survival, possibly through a series of downstream protein kinase and cysteine protease signaling pathways that affect mitochondrially mediated programmed cell death. They may also play a role in glutamate-induced neuronal death by facilitating Cal(2+) mobilization. Hence, mGluRs have become a target for neuroprotective drug development. They represent a pharmacological path to a relatively subtle amelioration of neurotoxicity because they serve a modulatory rather than a direct role in excitatory glutamatergic transmission.
Resumo:
Recent discoveries of different modes of exocytosis and a plethora of molecules involved in neurotransmitter release has resulted in demand for more rapid and efficient methods for monitoring endogenous glutamate release from various tissue sources. In this article, we describe a high throughput microplate version of the enzyme-linked fluorescence detection method for the measurement of released glutamate, which utilises glutamate dehydrogenase, and the reduction of NADP to NADPH. Previous versions of this method rely upon cuvette-based fluorimeters for detection that are limited by large sample volumes and small numbers of samples that can be measured simultaneously. Comparison between the two methods shows that the microplate assay has comparable performance to the cuvette-based assay but has the capacity to analyse many times more samples in a given run. This increased capacity provides improved experimental design opportunities, higher experimental throughput and better comparison between experimental conditions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Classical mammalian transient receptor potential channels form non-selective cation channels that open in response to activation of phospholipase C-coupled metabotropic receptors, and are thought to play a key role in calcium homeostasis in non-excitable cells. Within the nervous system transient receptor potential channels are widely distributed but their physiological roles are not well understood. Here we show that in the rat lateral amygdala transient receptor potential channels mediate an excitatory synaptic response to glutamate. Activation of group l etabotropic glutamate receptors on pyramidal neurons in the lateral amygdala with either exogenous or synaptically released glutamate evokes an inward current at negative potentials with a current voltage relationship showing a region of negative slope and steep outward rectification. This current is blocked by inhibiting G protein function with GTP-beta-S, by inhibiting phospholipase C or by infusing transient receptor potential antibodies into lateral amygdala pyramidal neurons. Using RT-PCR and Western blotting we show that transient receptor potential 1, transient receptor potential 4 and transient receptor potential 5 are present in the lateral amygdala. Single cell PCR confirms the presence of transient receptor potential 1 and transient receptor potential 5 in pyramidal neurons and we show by co-immunoprecipitation that transient receptor potential 1 and transient receptor potential 5 co-assemble as a heteromultimers in the amygdala. These results show that in lateral amygdala pyramidal neurons synaptically released glutamate activates transient receptor potential channels, which we propose are likely to be heteromultimeric channels containing transient receptor potential 1 and transient receptor potential 5/transient receptor potential 4. (c) 2005 Published by Elsevier Ltd on behalf of IBRO.