3 resultados para MOLECULAR-ORIENTATION

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flows of complex fluids need to be understood at both macroscopic and molecular scales, because it is the macroscopic response that controls the fluid behavior, but the molecular scale that ultimately gives rise to rheological and solid-state properties. Here the flow field of an entangled polymer melt through an extended contraction, typical of many polymer processes, is imaged optically and by small-angle neutron scattering. The dual-probe technique samples both the macroscopic stress field in the flow and the microscopic configuration of the polymer molecules at selected points. The results are compared with a recent tube model molecular theory of entangled melt flow that is able to calculate both the stress and the single-chain structure factor from first principles. The combined action of the three fundamental entangled processes of reptation, contour length fluctuation, and convective constraint release is essential to account quantitatively for the rich rheological behavior. The multiscale approach unearths a new feature: Orientation at the length scale of the entire chain decays considerably more slowly than at the smaller entanglement length.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural and dynamic properties of dioctadecyldimethylammoniums (DODDMA) intercalated into 2:1 layered clays are investigated using isothermal-isobaric (NPT) molecular dynamics (MD) simulation. The simulated results are in reasonably good agreement with the available experimental measurements, such as X-ray diffraction (XRD), atom force microscopy (AFM), Fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR) spectroscopies. The nitrogen atoms are found to be located mainly within two layers close to the clay surface whereas methylene groups form a pseudoquadrilayer structure. The results of tilt angle and order parameter show that interior two-bond segments of alkyl chains prefer an arrangement parallel to the clay surface, whereas the segments toward end groups adopt a random orientation. In addition, the alkyl chains within the layer structure lie almost parallel to the clay surface whereas those out of the layer structure are essentially perpendicular to the surface. The trans conformations are predominant in all cases although extensive gauche conformations are observed, which is in agreement with previous simulations on n-butane. Moreover, an odd-even effect in conformation distributions is observed mainly along the chains close to the head and tail groups. The diffusion constants of both nitrogen atoms and methylene groups in these nanoconfined alkyl chains increase with the temperature and methelene position toward the tail groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystal structures of human phenylethanolamine N-methyltransferase in complex with S-adenosyl-L-homocysteine (7, AdoHcy) and either 7-iodo-1,2,3,4-tetrahydroisoquinoline (2) or 8,9-dichloro-2,3,4,5-tetrahydro-1H-2-benzazepine (3, LY134046) were determined and compared with the structure of the enzyme complex with 7 and 7-aminosulfonyl-1,2,3,4-tetrahydroisoquinoline (1, SK&F 29661). The enzyme is able to accommodate a variety of chemically disparate functional groups on the aromatic ring of the inhibitors through adaptation of the binding pocket for this substituent and by subtle adjustments of the orientation of the inhibitors within the relatively planar binding site. In addition, the interactions formed by the amine nitrogen of all three inhibitors reinforce the hypothesis that this functional group mimics the beta-hydroxyl of norepinephrine rather than the amine. These studies provide further clues for the development of improved inhibitors for use as pharmacological probes.