6 resultados para MOLECULAR VARIANTS

em University of Queensland eSpace - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Genetic screening of women from multiple-case breast cancer families and other research-based endeavors have identified an extensive collection of germline variations of BRCA1 and BRCA2 that can be classified as deleterious and have clinical relevance. For some variants, such as those in the conserved intronic splice site regions which are highly likely to alter splicing, it is not possible to classify them based on the identified DNA sequence variation alone. We studied 11 multiple-case breast cancer families carrying seven distinct splice site region genetic alterations in BRCA1 or BRCA2 (BRCA1, c.IVS6-2delA, c.IVS9-2A>C, c.IVS4-1G>T, c.IVS20+1G>A and BRCA2, c.IVS17-1G>C, c.IVS20+1G>A, c.IVS7-1G>A) and applied SpliceSiteFinder to predict possible changes in efficiency of splice donor and acceptor sites, characterized the transcripts, and estimated the average age-specific cumulative risk (penetrance) using a modified segregation analysis. SpliceSiteFinder predicted and we identified transcipts that illustrated that all variants caused exon skipping, and all but two led to frameshifts. The risks of breast cancer to age 70 yrs, averaged over all variants, over BRCA1 variants alone, and over BRCA2 variants alone, were 73% (95% confidence interval 47-93), 64% (95%CI 28-96) and 79% (95%CI 48-98) respectively (all P

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular modelling of human CYP1B1 based on homology with the mammalian P450, CYP2C5, of known three-dimensional structure is reported. The enzyme model has been used to investigate the likely mode of binding for selected CYP1B1 substrates, particularly with regard to the possible effects of allelic variants of CYP1B1 on metabolism. In general, it appears that the CYP1B1 model is consistent with known substrate selectivity for the enzyme, and the sites of metabolism can be rationalized in terms of specific contacts with key amino acid residues within the CYP1B1 heme locus. Further-more, a mode of binding interaction for the inhibitor, a-naphthoflavone, is presented which accords with currently available information. The current paper shows that a combination of molecular modelling and experimental determinations on the substrate metabolism for CYP1B1 allelic variants can aid in the understanding of structure-function relationships within P450 enzymes. (C) 2003 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural isolates and laboratory strains of West Nile virus (WNV) and Japanese encephalitis virus (JEV) were attenuated for neuroinvasiveness in mouse models for flavivirus encephalitis by serial passage in human adenocarcinoma (SW13) cells. The passage variants displayed a small-plaque phenotype, augmented affinity for heparin-Sepharose, and a marked increase in specific infectivity for SW13 cells relative to the respective parental viruses, while the specific infectivity for Vero cells was not altered. Therefore, host cell adaptation of passage variants was most likely a consequence of altered receptor usage for virus attachment-entry with the involvement of cell surface glycosaminoglycans (GAG) in this process. In vivo blood clearance kinetics of the passage variants was markedly faster and viremia was reduced relative to the parental viruses, suggesting that affinity for GAG (ubiquitously present on cell surfaces and extracellular matrices) is a key determinant for the neuroinvasiveness of encephalitic flaviviruses. A difference in pathogenesis between WNV and JEV, which was reflected in more efficient growth in the spleen and liver of the WNV parent and passage variants, accounted for a less pronounced loss of neuroinvasiveness of GAG binding variants of WNV than JEV. Single gain-of-net-positive-charge amino acid changes at E protein residue 49, 138, 306, or 389/390, putatively positioned in two clusters on the virion surface, define molecular determinants for GAG binding and concomitant virulence attenuation that are shared by the JEV serotype flaviviruses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immunohistochemical analysis of E-cadherin has changed the way lobular neoplasia is perceived. It has helped to classify difficult cases of carcinoma in situ with indeterminate features and led to the identification of new variants of lobular carcinoma. Pleomorphic lobular carcinoma (PLC) and pleomorphic lobular carcinoma in situ (PLCIS), recently described variants of invasive and in situ classic lobular carcinoma, are reported to be associated with more aggressive clinical behaviour. Although PLC/PLCIS show morphological features of classic lobular neoplasia and lack E-cadherin expression, it is still unclear whether these lesions evolve through the same genetic pathway as lobular carcinomas or are high-grade ductal neoplasms that have lost E-cadherin. Here we have analysed a case of extensive PLCIS and invasive PLC associated with areas of E-cadherin-negative carcinoma in situ with indeterminate features, using immunohistochemistry, chromogenic in situ hybridization, high-resolution comparative genomic hybridization (CGH) and array-based CGH. We observed that all lesions lacked E-cadherin and beta-catenin and showed gain of 1q and loss of 16q, features that are typical of lobular carcinomas but are not seen in high-grade ductal lesions. In addition, amplifications of c-myc and HER2 were detected in the pleomorphic components, which may account for the high-grade features in this case and the reported aggressive clinical behaviour of these lesions. Taken together, these data suggest that at least some PLCs may evolve from the same precursor or through the same genetic pathway as classic lobular carcinomas. Copyright (c) 2005 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In humans, a polymorphic gene encodes the drug-metabolizing enzyme NATI (arylamine N-acetyltransferase Type 1), which is widely expressed throughout the body. While the protein-coding region of NATI is contained within a single exon, examination of the human EST (expressed sequence tag) database at the NCBI revealed the presence of nine separate exons, eight of which were located in the 5'non-coding region of NATI. Differential splicing produced at least eight unique mRNA isoforms that could be grouped according to the location of the first exon, which suggested that NATI expression occurs from three alternative promoters. Using RT (reverse transcriptase)-PCR, we identified one major transcript in various epithelial cells derived from different tissues. In contrast, multiple transcripts were observed in blood-derived cell lines (CEM, THP-1 and Jurkat), with a novel variant, not identified in the EST database, found in CEM cells only. The major splice variant increased gene expression 9-11-fold in a luciferase reporter assay, while the other isoforrns were similar or slightly greater than the control. We examined the upstream region of the most active splice variant in a promoter-reporter assay, and isolated a 257 bp sequence that produced maximal promoter activity. This sequence lacked a TATA box, but contained a consensus Sp1 site and a CAAT box, as well as several other putative transcription-factor-binding sites. Cell-specific expression of the different NATI transcripts may contribute to the variation in NATI activity in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of glycosylation on AFP foldability was investigated by parallel quantitative and qualitative analyses of the refolding of glycosylated and nonglycosylated AFP variants. Both variants were successfully refolded by dialysis from the denatured-reduced state, attaining comparable ``refolded peak'' profiles and refolding yields as determined by reversed-phase HPLC analysis. Both refolded variants also showed comparable spectroscopic fingerprints to each other and to their native counterparts, as determined by circular dichroism spectroscopy. Inclusion body-derived AFP was also readily refolded via dilution under the same redox conditions as dialysis refolding, showing comparable circular dichroism fingerprints as native nonglycosylated AFP. Quantitative analyses of inclusion body-derived AFP showed sensitivity of AFP aggregation to proteinaceous and nonproteinaceous inclusion body contaminants, where refolding yields increased with increasing AFP purity. All of the refolded AFP variants showed positive responses in ELISA that corresponded with the attainment of a bioactive conformation. Contrary to previous reports that the denaturation of cord serum AFP is an irreversible process, these results clearly show the reversibility of AFP denaturation when refolded under a redox-controlled environment, which promotes correct oxidative disulfide shuffling. The successful refolding of inclusion body-derived AFP suggests that fatty acid binding may not be required for the attainment of a rigid AFP tertiary structure, contrary to earlier studies. The overall results from this work demonstrate that foldability of the AFP molecule from its denatured-reduced state is independent of its starting source, the presence or absence of glycosylation and fatty acids, and the refolding method used (dialysis or dilution).